
1
Copyright @ 2013, John Jay King http://www.kingtraining.com

Presented by: John Jay King
Download this paper from: http://www.kingtraining.com

Avoiding SQL Injection:
Don’t Let a Stranger “Shoot You Up”

2
Copyright @ 2013, John Jay King http://www.kingtraining.com

Session Objectives

•  Learn how SQL Injection occurs and why
•  Code program SQL to avoid SQL Injection
•  Write more-secure software

3
Copyright @ 2013, John Jay King http://www.kingtraining.com

Today’s Agenda
•  Understanding SQL Injection

–  How SQL Injection occurs
–  What can people do with SQL Injection?

•  Stopping SQL Injection
•  Coding techniques to avoid SQL Injection

4
Copyright @ 2013, John Jay King http://www.kingtraining.com

Who Am I?

•  John King – Partner, King Training Resources
•  Oracle Ace Director
•  Member Oak Table Network
•  Providing training to Oracle and IT community for

over 25 years – http://www.kingtraining.com
•  “Techie” who knows Oracle, ADF, SQL, Java, and

PL/SQL pretty well (along with many other topics)
•  Member of ODTUG (Oracle Development Tools

User Group) Board of Directors (until Jan 1!)

5
Copyright @ 2013, John Jay King http://www.kingtraining.com

Understanding SQL Injection
•  SQL Injection is the act of “adding to” SQL

unbeknownst to the application
– Various techniques are widely publicized

enabling patient and/or automated efforts
– SQL queries may be modified in many

environments
– Additional SQL may be executed in some

environments

6
Copyright @ 2013, John Jay King http://www.kingtraining.com

How SQL Injection occurs
•  Web/Client-Server applications request

user input; the user input is then added to
SQL in the code

If the code in the application is sloppy; a
patient attacker can add to the SQL being
executed

Or, “Inject” code into the SQL

7
Copyright @ 2013, John Jay King http://www.kingtraining.com

What SQL Injection Can Do
•  Query modifications (all databases)

– Adding/modifying clauses
– Adding UNION / UNION ALL

•  Column/Table interrogation
•  Adding / Changing / Deleting data rows
•  CREATE TABLE, DROP TABLE, etc…
•  In some cases; perform admin functions

like SHUTDOWN and even operating
system commands

8
Copyright @ 2013, John Jay King http://www.kingtraining.com

OWASP: #1 Security Risk
•  According to the OWASP (Open Web

Security Project) site’s

2013 “OWASP Top Ten Project” list

#1 Security Risk

A1: Injection

9
Copyright @ 2013, John Jay King http://www.kingtraining.com

CWE: #1 Weakness
•  According to the 2011 Common Weakness

Enumeration site’s
“2011 CWE/SANS Top 25 Most Dangerous
Software Errors” list

#1 with weakness score of 93.8 out of 100

CWE-89 Improper Neutralization of Special
Elements used in an SQL Command
('SQL Injection‘)

10
Copyright @ 2013, John Jay King http://www.kingtraining.com

Examples From Wikipedia
•  Wikipedia’s entry for SQL Injection provides

a list of publicized SQL Injection attacks
including these (see site for more)

11
Copyright @ 2013, John Jay King http://www.kingtraining.com

Which Databases ?
•  SQL Injection may be performed on all

major databases:
– Oracle
– DB2
– MySQL
– SQL Server
– PostgreSQL
– and more…

•  SQL Injection is more-difficult in advanced
products like Oracle and DB2

12
Copyright @ 2013, John Jay King http://www.kingtraining.com

Which Applications ?
•  Any application accepting user input that is

inserted into SQL; especially when strings
are concatenated into WHERE or HAVING
(but possible in other ways….)

•  Simple tools like PHP and ASP are easier
to attack

•  Programmatic environments like Java EE
and .NET offer fewer vulnerabilities but can
still be attacked
(so can poorly-written ADF and APEX)

13
Copyright @ 2013, John Jay King http://www.kingtraining.com

How Is It Done?
•  First, a sloppy SQL statement opens the

door using user input to complete code:
String sql =

"SELECT empno, ename, hiredate, sal, deptno "
 + " FROM emp "

 + " WHERE deptno = '" + myParm + "'";

14
Copyright @ 2013, John Jay King http://www.kingtraining.com

Functioning as “Designed”
•  Application shows data; note how use of

parameter is shown in URL (myParm=10)

15
Copyright @ 2013, John Jay King http://www.kingtraining.com

Uh-Oh! We See A Weakness
•  What happens if I modify the parameter

and resubmit?
– First, let’s try

 myParm=10 or 1=1 --
– No luck, how about…

myParm=10’ or 1=1 --
– Jackpot! All rows shown!

16
Copyright @ 2013, John Jay King http://www.kingtraining.com

What Just Happened?
•  The SQL was coded as follows:
WHERE deptno = '" + myParm + "'"

•  The “user” entered:
10' or 1=1 --

•  The SQL executed was:
WHERE deptno = '10' or 1=1 --

– The first apostrophe, closed the input string
– “or 1=1” is always true (fetching all rows)
– The two hyphens “--” commented the rest of

the line

17
Copyright @ 2013, John Jay King http://www.kingtraining.com

Persistence of Attackers
•  Once an attacker has noticed that your

SQL in vulnerable; a series of tests can be
made to discover:
– How many columns in current query
– Order of columns in current query
– Types of data in current query

•  Once a little information is gained, another
series of test/probes can discover
– Type of database
– Access allowed to application user

18
Copyright @ 2013, John Jay King http://www.kingtraining.com

Learning About the Query
•  Add an order by using column numbers to

determine how many columns in the query
•  Observe output while sorting to see order

of columns, attempt to deduce data type
•  Add “UNION ALL” or “UNION” and a

dummy query to be sure of original query
•  Add “UNION ALL” of some important

information to determine access rights and
database type

19
Copyright @ 2013, John Jay King http://www.kingtraining.com

Some Examples
•  Here are some injections to the example

code that worked
– Prove SQL can be injected

 ' or 1=1 --

– Determine number of columns

 ' or 1=1 order by 6 --

– Determine sequence/type of columns

 ' or 1=1 order by 1 desc --

– What Query Looks like (using screen names)
 -- select column data is:

 -- emp no, name, hire date, salary dept no

20
Copyright @ 2013, John Jay King http://www.kingtraining.com

Two Unwanted Outcomes
•  The following statements list the users in

the test Oracle database (first) and their
role privileges (second)

•  Knowledgeable persons can get similar
information from any product provided that
the application user has rights…

1' union all select user_id,username || '/' ||

password,created,0,0 from dba_users –

1' union all select 0,granted_role || '-' ||

grantee,null,0,0 from dba_role_privs order by 2 --

21
Copyright @ 2013, John Jay King http://www.kingtraining.com

Real Mischief Potential!
•  Some application code executes SQL in a

manner that would allow multiple statement
to be executed
(usually delimited by a semi-colon “;”)

•  If the application user is empowered can
create/drop tables, run admin functions,
etc…

myParm=1' ; DELETE CUSTOMER_MASTER; --

22
Copyright @ 2013, John Jay King http://www.kingtraining.com

Mitigating SQL Injection
•  The keys to mitigating SQL injection are:

– Controlling security profile of running code
– Limiting opportunities for attack
– Carefully editing and validating user input

23
Copyright @ 2013, John Jay King http://www.kingtraining.com

Limit Security Profiles
•  Some SQL Injection exploits and impacts

are possible simply because the userid
used in an application is too powerful
– Application userids should not have

administrative authority of any kind
– Application userids should not have authority to

see data that is not part of the application
– Applications that must insert/update/delete

data should use Stored Procedures so that the
application user need not be empowered

24
Copyright @ 2013, John Jay King http://www.kingtraining.com

Limit Opportunities for Attack
•  Use Parameterized API’s such as Java

JDBC Prepared Statements

String sql = "SELECT empno, ename, hiredate, sal,

 + " deptno from emp "
 + " WHERE deptno = ? ";

PreparedStatement stmt = conn.prepareStatement(sql);
stmt.setInt(1,myIntParm);
ResultSet rset = stmt.executeQuery();

25
Copyright @ 2013, John Jay King http://www.kingtraining.com

Warning! Danger-Danger!
•  Just because an application is

using parameterized input and/
or Stored Procedures does not
mean you are safe !

•  Unchecked input can still wreak
havoc

26
Copyright @ 2013, John Jay King http://www.kingtraining.com

Avoiding SQL Injection
•  SQL Injection may be avoided by editing

and validating input
– Length of data
– Correct type of data
– Unwanted / Undesired Characters
– Unwanted / Undesired String Combinations

27
Copyright @ 2013, John Jay King http://www.kingtraining.com

Length of Data
•  Validate input data to make sure length is

within expected bounds

28
Copyright @ 2013, John Jay King http://www.kingtraining.com

Correct Type of Data
•  Do not use “string”-type data for input

except where “string”-type is required;

Most SQLs will simply convert the data of
the column being tested for comparison

29
Copyright @ 2013, John Jay King http://www.kingtraining.com

Unwanted Characters
•  In cases where lengthy “string”-type data

is required for input; check to see if
unwanted characters are present
– Semi-colons, colons, comparison operators
– Quotes and Apostrophes (but what if it’s a

name field and you want to allow O’Brian?);
look for repetitions of quotes and apostrophes

– Double-hyphen comments “--”

30
Copyright @ 2013, John Jay King http://www.kingtraining.com

“Expected” Input Values
•  Finally, some it’s not a bad idea to subject

input values to some type of “reality check”
to make sure values entered are
reasonable for the input field and not just
an experimental stab by some intruder

31
Copyright @ 2013, John Jay King http://www.kingtraining.com

Error Messaging
•  Dumping SQL error messages onto the

user’s screen can be confusing to the
customer; and it can provide information to
an attacker!

•  Provide messages about the values
expected; do not add superfluous
information about column names, data
types, etc…

32
Copyright @ 2013, John Jay King http://www.kingtraining.com

OWASP Free APIs
•  Beware the “safety” of the escape

character ('\); this can be spoofed too!
•  OWASP has a library of routines that might

help (not a panacea, but helpful)
 https://www.owasp.org/index.php/ESAPI

– Look for “Escaping” and “Whitelist” APIs

33
Copyright @ 2013, John Jay King http://www.kingtraining.com

Unwanted Strings
•  If lengthy “string”-type data is required;

check for
– SQL keywords
– Adminstrative keywords
– Use of SQL-type operators and characters

34
Copyright @ 2013, John Jay King http://www.kingtraining.com

OWASP SQL Injection Page
•  OWASP has a resource page to help with

SQL injection

https://www.owasp.org/index.php/Top_10_2013-A1

35
Copyright @ 2013, John Jay King http://www.kingtraining.com

OWASP “Cheat Sheet”
•  I’m all for free help, here’s an excellent

cheat sheet provided by OWASP
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

36
Copyright @ 2013, John Jay King http://www.kingtraining.com

CWE SQL Injection Info.
•  The CWE also provides a list of resources

for mitigating SQL Injection
http://cwe.mitre.org/top25/index.html#CWE-89

37
Copyright @ 2013, John Jay King http://www.kingtraining.com

Where Can I Learn More?
•  OWASP (Open Web Application

 Security Project)
https://www.owasp.org/index.php/Main_Page

•  OWASP top 10
https://www.owasp.org/index.php/

Category:OWASP_Top_Ten_Project

•  CWE (Common Weakness Enumeration)
http://cwe.mitre.org

•  CWE top 25
http://cwe.mitre.org/top25/index.html

38
Copyright @ 2013, John Jay King http://www.kingtraining.com

Wrapping it all Up

•  SQL Injection is a very real threat to
online applications using SQL databases

•  SQL Injection is preventable by simply:
–  Limiting user authority
–  Using parameterized APIs
–  Checking/Validating user input

39
Copyright @ 2013, John Jay King http://www.kingtraining.com

40
Copyright @ 2013, John Jay King http://www.kingtraining.com

The
Venetian ���

Las Vegas,
NV 	

	

COLLABORATE 14 – IOUG
Forum	

April 6 – 10, 2014	

41
Copyright @ 2013, John Jay King http://www.kingtraining.com

42
Copyright @ 2013, John Jay King http://www.kingtraining.com

Avoiding SQL Injection:
Don’t Let a Stranger “Shoot you up”

To contact the author:

John King
King Training Resources
P. O. Box 1780
Scottsdale, AZ 85252 USA
1.800.252.0652 - 1.303.798.5727
Email: john@kingtraining.com

Today’s slides and examples are on the web:
http://www.kingtraining.com

Please Complete Session Evaluations

Thanks for your attention!

