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Oracle 12c and Oracle 11gR2  
New Features For Developers 

Presented by: John Jay King 
 

Download this paper from: http://www.kingtraining.com 
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Session Objectives 

•  Learn new Oracle 12c and Oracle 11gR2 
features that are geared to developers 

•  Know how existing database features have 
been improved in Oracle 

•  Become aware of some DBA-oriented 
features that impact developers 
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Who Am I? 

•  John King – Partner, King Training Resources 
•  Oracle Ace Director 
•  Member Oak Table Network 
•  Providing training to Oracle and IT community for 

over 25 years – http://www.kingtraining.com 
•  “Techie” who knows Oracle, ADF, SQL, Java, and  

PL/SQL pretty well (along with many other topics) 
•  Leader in Service Oriented Architecture (SOA)  
•  Member of ODTUG (Oracle Development Tools 

User Group) Board of Directors 
•  Charter member of IOUG 
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Oracle 11g 

•  Environment changes 
•  New/improved SQL & PL/SQL statements 
•  SQL & PL/SQL Results Caches 
•  Java, JDBC, and SQLJ improvements 
•  New Analytic (and other) Functions 
•  Java and XML Enhancements 
•  Pro*C/Pro*COBOL & OCI Enhancements 
•  Edition-Based Redefinition (EBR) 
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“Recent” Releases 
•  Oracle 11g R1   August 2007 
•  Oracle 11g R2   September 2009 
•  Oracle 12c R1   June 2013 
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Oracle 11g R2 

•  Results Cache Improvements 
•  New Analytic Functions 
•  XML Enhancements 
•  Java Enhancements 
•  Pro*C/Pro*COBOL Enhancements 
•  Edition-Based Redefinition (EBR) 
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Oracle 12c – Exciting DBA Stuff 
•  Multi-tenant Architecture: 

(first architecture change to Oracle since V6 in 1988!)    
– Container Database (CDB)  
– Pluggable Database(s) (PDB) 

•  Performance Improvements: 
–  Improved optimization 
– Enhanced Statistics & New Histograms 
– Adaptive Execution Plans 

•  More cool stuff (watch OOW announcements…) 



8 
Copyright @ 2013, John Jay King http://www.kingtraining.com 

Oracle 12c – On Our Agenda 
•  SELECT improvements: Top-n & Pagination, 

pattern matching, outer join improvements 
•  Table definition improvements: expanded 

columns, identity columns, default improvements, 
invisible columns 

•  PL/SQL in WITH clause 
•  Temporal Validity 
•  Online DML operations 
•  Truncate CASCADE 
•  EBR improvements 
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Virtual Columns 
•  Beginning with Oracle 11g tables may now include virtual 

columns (dynamic values; not stored) 
•  Virtual columns obtain their value by evaluating an 

expression that might use:  
–  Columns from the same table 
–  Constants 
–  Function calls (user-defined functions or SQL functions) 

•  Virtual columns might be used to: 
–  Eliminate some views 
–  Control table partitioning (DBA stuff) 
–  Manage the new "binary" XMLType data 

•  Virtual columns may be indexed! 
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Creating Virtual Column 
CREATE TABLE NEWEMP 
       (EMPNO NUMBER(4) NOT NULL, 
        ENAME VARCHAR2(10), 
        JOB VARCHAR2(9), 
        MGR NUMBER(4), 
        HIREDATE DATE, 
        SAL NUMBER(7, 2), 
        COMM NUMBER(7, 2), 
        INCOME NUMBER(9,2)  
           GENERATED ALWAYS  
           AS (NVL("SAL",0)+NVL("COMM",0))  
     VIRTUAL, 

        DEPTNO NUMBER(2)); 

•  Datatype defaults if not specified (based upon expression) 
•  Expression result appears as data in table but is generated 
•  “generated always” and “virtual” not required, but add clarity 
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Adding Virtual Columns 

•  Oracle 11g also allows specification of Virtual Columns 
via ALTER TABLE 

 

 alter table myemp 
  add (totpay as  
       (nvl(sal,0)+nvl(comm,0))); 
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PIVOT/UNPIVOT 
•  Oracle joins other vendors by adding the PIVOT clause to 

the SELECT statement 
•  Adding a PIVOT clause to a SELECT allows rotation of 

rows into columns while performing aggregation to create 
cross-tabulation queries 

•  The PIVOT clause:  
–  Computes aggregations (implicit GROUP BY of all columns not in 

PIVOT clause) 
–  Output of all implicit grouping columns followed by new columns 

generated by PIVOT  
•  UNPIVOT performs the same activity but converts 

columns into ROWS (does not “undo” PIVOT) 
•  Clever developers have used PL/SQL and/or CASE to 

achieve PIVOT results before, but now it is part of 
Oracle's standard SQL 
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select * from 
  (select job,deptno,income from newemp) query1 
    pivot (avg(income) 
    for deptno in (10 AS ACCOUNTING,  

       20 AS RESEARCH,  
       30 AS SALES)) 

    order by job; 
 
Job       ACCOUNTING RESEARCH    SALES 
ANALYST       30000   
CLERK         13000   9500     9500 
MANAGER    24500  29750    28500 
PRESIDENT       50000   
SALESMAN     19500 
 

PIVOT Example 
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UNPIVOT Example 
select * from pivot_emp_table 
  unpivot include nulls 
    (avgpay for dept in (ACCOUNTING,RESEARCH,SALES)) 
  order by job; 
 
JOB          DEPT    AVGPAY 
ANALYST   ACCOUNTING   
ANALYST   RESEARCH   30000 
ANALYST   SALES  
   /*** more rows ***/ 
SALESMAN   ACCOUNTING   
SALESMAN   RESEARCH   
SALESMAN   SALES   19500 
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Invisible Indexes 
•  Sometimes the optimizer selects the wrong index 

–  Beginning with Oracle 11g it is possible to make an 
index “invisible” to the optimizer 

–  Use ALTER TABLE to make it visible/invisible  
 
create index mytab_ix on mytab(mykey) invisible 
 
alter intex mytab_ix invisible; 
 
alter index mytab_ix visible; 
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Results Caching 

•  Caching is nothing new to Oracle;  
Oracle has cached data for a long time now 

•  What’s new is the caching of results… 
•  This is similar to how a Materialized View 

works but is more-dynamic 
•  New “result_cache” hint asks Oracle to 

cache query results 
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Result Cache – Test Query 
select cust_last_name || ', ' || cust_first_name cust_name 
      ,cust_city 
      ,prod_id 
      ,count(*) nbr_sales 
 from sh.customers cust 
    join sh.sales sales 
      on cust.cust_id = sales.cust_id 
 where country_id = 52789 
   and prod_id in (120,126) 
 group by cust_last_name,cust_first_name,cust_city,prod_id 
 having count(*) > 10 
 order by cust_name,nbr_sales; 
 

•  This query was run three times in succession with 
timing turned on; resulting timings were 
–  Elapsed: 00:00:00.67 
–  Elapsed: 00:00:00.46 
–  Elapsed: 00:00:00.37 
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Using Result Cache  
select /*+ result_cache */ cust_last_name || ', ' || cust_first_name 

cust_name 
      ,cust_city 
      ,prod_id 
      ,count(*) nbr_sales 
 from sh.customers cust 
    join sh.sales sales 
      on cust.cust_id = sales.cust_id 
 where country_id = 52789 
   and prod_id in (120,126) 
 group by cust_last_name,cust_first_name,cust_city,prod_id 
 having count(*) > 10 
 order by cust_name,nbr_sales; 
 

•  This query was run three times in succession with 
timing turned on; resulting timings were 
–  Elapsed: 00:00:00.23 
–  Elapsed: 00:00:00.01 
–  Elapsed: 00:00:00.03 
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PL/SQL Result Cache 
•  PL/SQL allows specification of a result_cache for 

function/procedure calls 
•  Add the clause “result_cache” just before the 

“AS/IS” keyword in the Function and/or 
Procedure definition 
(Oracle 11g R1 also used now-obsolete 
  “relies_on” clause) 

•  The results of a call to the Function or Procedure 
with a specific set of input parameters is stored 
for later re-use 
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PL/SQL Result Cache - Code 
CREATE OR REPLACE FUNCTION RESULT_CACHE_ON  

(in_cust_id sh.customers.cust_id%type,  in_prod_id 
sh.sales.prod_id%type) 

RETURN number  
RESULT_CACHE -- RELIES_ON (SH.CUSTOMERS, SH.SALES) 
authid definer 
AS 
 sales number(7,0); 
BEGIN 
select count(*) nbr_sales  into sales 
 from sh.customers cust join sh.sales sales 
      on cust.cust_id = sales.cust_id 
 where cust.cust_id = in_cust_id 
  and  prod_id = in_prod_id; 
 return sales; 
EXCEPTION 
  when no_data_found then return 0; 
END RESULT_CACHE_ON; 
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PL/SQL Result Cache - Timings 
 1* select result_cache_on(4977,120) from dual 
RESULT_CACHE_ON(4977,120) 
------------------------- 
                       14 
Elapsed: 00:00:00.40 
 
  1* select result_cache_on(4977,120) from dual 
RESULT_CACHE_ON(4977,120) 
------------------------- 
                       14 
Elapsed: 00:00:00.00 
 
  1* select result_cache_on(4977,120) from dual 
RESULT_CACHE_ON(4977,120) 
------------------------- 
                       14 
Elapsed: 00:00:00.01 
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PL/SQL Enhancements 
•  Oracle 11g’s changes to PL/SQL are very interesting to 

the developer: 
–  PL/SQL has been improved to include all of the 

XMLType, BLOB, Regular Expression, and other 
functionality added to SQL 

–  Improvements have been made to the compiler 
–  New PL/SQL data types 
–  Sequence number use is easier 
–  “continue” added for loop control 
–  CALL syntax has improved 
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•  In previous releases, the PL/SQL compiler required a 
standalone “C” compiler 

•  Oracle 11g now provides a native compiler for PL/SQL 
eliminating the need for a separate compiler 
ALTER PROCEDURE my_proc COMPILE 
PLSQL_CODE_TYPE=NATIVE REUSE SETTINGS;  

ALTER PROCEDURE my_proc COMPILE 
PLSQL_CODE_TYPE=INTERPRETED  
  REUSE SETTINGS;  

ALTER SESSION SET 
PLSQL_CODE_TYPE=NATIVE;  

ALTER SESSION SET  
PLSQL_CODE_TYPE=INTERPRETED; 

Compiler Enhancement 



24 
Copyright @ 2013, John Jay King http://www.kingtraining.com 

Compound Triggers 
•  Compound triggers allow the same code to be shared 

across timing points 
 
(previously accomplished using packages most of the 
time) 
 

•  Compound triggers have unique declaration and code 
sections for timing point 
 

•  All parts of a compound trigger share a common state that 
is initiated when the triggering statement starts and is 
destroyed when the triggering statement completes (even 
if an error occurs) 
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Compound Trigger Timing 
•  If multiple compound triggers exist for the same table; 

they fire together: 
–  All before statement code fires first 
–  All before row code fires next 
–  All after row code fires next 
–  All after statement code finishes 

•  The sequence of trigger execution can be controlled only 
using the FOLLOWS clause 
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Compound Trigger Syntax 

CREATE TRIGGER compound_trigger 
  FOR UPDATE OF sal ON emp 
    COMPOUND TRIGGER 
  -- Global Declaration Section 
  BEFORE STATEMENT IS 
  BEGIN … 
  BEFORE EACH ROW IS 
  BEGIN … 
  AFTER EACH ROW IS 
  BEGIN … 
END compound_trigger; 
/ 
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TRIGGER … FOLLOWS 
•  Oracle 11g adds the “FOLLOWS” clause to trigger 

creation allowing control over the sequence of execution 
when multiple triggers share a timing point 

•  FOLLOWS indicates the including trigger should happen 
after the named trigger(s); the named trigger(s) must 
already exist 

•  If some triggers use “FOLLOWS” and others do not; only 
the triggers using “FOLLOWS” are guaranteed to execute 
in a particular sequence 
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How FOLLOWS Works 
•  FOLLOWs only distinguishes between triggers at the 

same timing point: 
–  BEFORE statement 
–  BEFORE row 
–  AFTER row  
–  AFTER statement 
–  INSTEAD OF 

•  In the case of a compound trigger, FOLLOWS applies 
only to portions of triggers at the same timing point (e.g. if 
a BEFORE ROW simple trigger names a compound 
trigger with FOLLOWS the compound trigger must have a 
BEFORE ROW section and vice versa 
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FOLLOWS Syntax 
CREATE OR REPLACE TRIGGER myTrigger 
    BEFORE/AFTER/INSTEAD OF  someEvent 
    FOR EACH ROW 
    FOLLOWS someschema.otherTrigger  
    WHEN (condition=true) 
    /* trigger body */ 

•  FOLLOWS may specify a list (and designate sequence) 
FOLLOWS otherTrigger1, otherTrigger2, etc 
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New PL/SQL Datatypes 
•  Oracle 11g adds three new PL/SQL datatypes: 

Simple_integer, Simple_float, Simple_double 
–  The three new datatypes take advantage of native 

compilation features providing faster arithmetic via 
direct hardware implementation 

–  SIMPLE_INTEGER provides a binary integer that is 
neither checked for nulls nor overflows 

–  SIMPLE_INTEGER values may range from  
-2147483648 to 2147483647 and is always NOT NULL 

–  Likewise, SIMPLE_FLOAT and SIMPLE_DOUBLE 
provide floating point without null or overflow checks 
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Example SIMPLE_INTEGER 
declare 
--  mytestvar pls_integer := 2147483645; 
  mytestvar simple_integer := 2147483645; 
begin 
 loop 

     mytestvar := mytestvar + 1; 
     dbms_output.put_line('Value of mytestvar is now ' 

      || mytestvar); 
     exit when mytestvar < 10; 
  end loop; 
end; 
Results in: 
Value of mytestvar is now 2147483646 
Value of mytestvar is now 2147483647 
Value of mytestvar is now -2147483648 
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Sequences in PL/SQL 
•  Sequence values NEXTVAL and CURRVAL may be use 

in PL/SQL assignment statement 

  myvar := myseq.nextval; 
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•  CONTINUE “iterates” a loop; branching over the rest of the 
code in the loop and returning to the loop control statement 
 
 begin 
   dbms_output.put_line('Counting down to blastoff!'); 
   for loopctr in reverse 1 .. ctr loop 
     if loopctr in (4,2) then 
         continue; 
     end if; 
     dbms_output.put_line(to_char(loopctr)); 
   end loop; 
   dbms_output.put_line('Blast Off!'); 
end; 
Counting down to blastoff! 
6  
5 
3 
1 
Blast Off!  

CONTINUE 

<-Values “4” and “2” do not appear in the output 
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•  REGEXP_COUNT counts the number of times a pattern 
occurs in a source string 
select ename,regexp_count(ename,'l',1,'i') from emp; 
SMITH  0 
ALLEN  2 
WARD  0 
JONES  0 
MARTIN  0 
BLAKE  1 
/** more rows ***/ 
MILLER  2 
–  string expression and/or column to match pattern 
–  Regular Expression pattern 
–  Beginning position in the source string (default=1) 
–  Match parameters (i = case insensitive, c = case sensitive, m = multiple 

line source delimited by ‘^’ or ‘$’, n = matches ‘.’ newline characters 
(default no), and x = ignore whitespace characters (default is to match) 
 

REGEXP_COUNT 
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•  PL/SQL allows function and procedure parameters to be 
specified in two ways; by position and by name 

•  With Oracle 11g SQL, parameter types may now be mixed 
•  Given the following function:  

CREATE OR REPLACE 
FUNCTION TEST_CALL (inval1 IN NUMBER, inval2 IN 
NUMBER, 
  inval3 IN NUMBER) RETURN NUMBER AS 

BEGIN 
  RETURN inval1 + inval2 + inval3; 
END TEST_CALL; 

•  The following calls all now work: 
test_call(vara,varb,varc) 
test_call(inval3=>varc,inval1=>vara,inval2=>varb) 
test_call(vara,inval3=>varc,inval2=>varb) 

CALL with Mixed Parameters 
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LISTAGG (11gR2) 
•  LISTAGG provides lists of lower-level columns after 

aggregation 
 
select department_id, 
       listagg(last_name, ', ') 
       within group 
       (order by last_name) dept_employees 
       from hr.employees 
       where department_id in (20,30) 
       group by department_id 
       order by department_id; 

 
 DEPARTMENT_ID  DEPT_EMPLOYEES 

    -------------  ----------------------------------------- 
       
               20  Fay, Hartstein 
        
               30  Baida, Colmenares, Himuro, Khoo,  
                   Raphaely, Tobias 
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NTH_VALUE (11gR2) 
•  NTH_VALUE simplifies the process of retrieving the “n-th” 

value 
 
 select distinct department_id 
     ,first_value(salary)  ignore nulls   

    over (partition by department_id order by salary desc 
    rows between unbounded preceding and unbounded following) 
   "1st" 

     ,nth_value(salary,2) ignore nulls  
    over (partition by department_id  order by salary desc 
    rows between unbounded preceding and unbounded following)  
   "2nd" 

     ,nth_value(salary,3) ignore nulls  
    over (partition by department_id  order by salary desc 
    rows between unbounded preceding and unbounded following)  
   "3rd" 

     from hr.employees 
     where department_id = 80 
     order by department_id, "1st", "2nd", "3rd"; 
 
 DEPARTMENT_ID        1st        2nd        3rd 
 ------------- ---------- ---------- ---------- 

              80      14000      13500      12000 
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Recursive Subquery 
•  Oracle’s CONNECT BY has allowed definition of a 

hierarchical relationship for years; now an ISO-standard 
option is available:   

 

with empConnect(last_name,employee_id,manager_id,lvl) 
     as (select last_name, employee_id, manager_id, 1 lvl2  

  from hr.employees where manager_id is null 
        union all 
         select emp.last_name, emp.employee_id,  

  emp.manager_id, ec.lvl+1 
          from hr.employees emp, empConnect ec 
         where emp.manager_id = ec.employee_id) 
     SEARCH DEPTH FIRST BY last_name SET order_by 
select lvl,lpad(' ' ,3*lvl, ' ')||last_name empname 
    from empConnect 
    order by order_by  
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External Directory Features 
•  With Oracle 11gR2 the EXECUTE privilege may be 

granted for Directory objects; allowing execution of code 
stored in host operating system files 

•  Pre-processing programs may be specified for External 
files used via Oracle Loader 
(perhaps to unzip, decrypt, translate,…) 
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Data Pump “Legacy Mode” 
•  Oracle 11gR2 has provided “legacy mode” for Oracle 

Data Pump  
•  Allows execution of existing Import/Export scripts  
•  When Data Pump recognizes Import/Export parameters it 

automatically switches to “legacy mode” and executes as 
desired 
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11gR2 XML Enhancements 
•  Binary XML has been enhanced with significant 

performance improvements 
•  Default XMLType storage is now Binary using SecureFile 

(used to be Unstructured) 
•  Unstructured XMLType is “deprecated” 
•  XMLIndex improved allowing indexing for all XMLTypes 

and for fragments via XPath and partitioning 
•  Partitioning now allowed for XMLType data 
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Binary XML 
•  Oracle continues its XML leadership in Oracle 11g 
•  Biggest change is the addition of a new “binary” XMLType 

–  “binary xml” is a third method for storing XML data in 
the database 

–  “structured” and “unstructured” XMLType still 
supported 

–  Oracle 11g’s XML processors includes a binary XML 
encoder, decoder, and token manager 

–  XML 1.0 text may be parsed via SAX events with or 
without a corresponding schema into “binary” XML form 

–  “binary” XMLType allows optimization of some XML 
applications by reducing memory and CPU expense 
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Next-Gen. LOB: Securefile 
•  Oracle 11g provides a new, more-secure, faster 

mechanism for storing Large Objects  
(e.g. XMLType data) 

•  LOB column specifications in CREATE TABLE or ALTER 
TABLE include STORE AS SECUREFILE 

•  SECUREFILE provides compression and encryption for 
Large OBjects (LOBs) 
–  Oracle 11g will detect duplicate LOB data and conserve 

space by only storing one copy  
("de-duplication" if SECUREFILE is specified). 

–  PL/SQL packages and OCI functions have been added 
to take advantage of SECUREFILE LOBs 

–  SECUREFILE lobs provide higher performance through 
reduced size and resource use. 
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XML Indexes 
•  Replaces CTXSYS.CTXXPATH indexes  
•  XML-specific index type, indexes document XML structure 
•  Designed to improve indexing unstructured and hybrid XML 
•  Determines XPath expressions for a document's XML tags 
•  Indexes singleton (scalar) nodes and items that occur 

multiple times 
•  XMLIndex record document child, descendant, and attribute 

axes (hierarchy) information 
•  XMLIndex is be design general (like CTXXPATH) rather 

than specific like B-tree indexes 
•  XMLIndex applies to all possible XPath document targets 
•  XMLIndex may be used for XMLQuery, XMLTable, 

XMLExists, XMLCast, extract, extractValue, and existsNode 
•  XMLIndex helps anywhere in the query, not just in the 

WHERE clause 
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Edition-Based Redefinition (EBR) 
•  The quest to eliminate downtime has led to a desire to 

provide "Online Application Upgrade" where an 
application need not be taken down when upgrades are 
applied 
–  Users of the existing system continue uninterrupted 
–  Users of the upgraded system use new code 

immediately 
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How? 
•  Oracle 11gR2 Edition-Based Redefinition adds a new 

non-schema "edition" of an application including all of the 
original edition's PL/SQL, views, and synonyms; the new 
edition may be modified as desired then tested and 
deployed without impacting the users of the original 
edition 

•  Once the new edition is ready for complete rollout it may 
be released 

•  This is accomplished by a combination of: 
–  Editioning Views   

 Showing the data "as of" a specific edition 
–  Cross-Edition Triggers   

 Triggers keeping "old" and "new" editions 
 synchronized 



47 
Copyright @ 2013, John Jay King http://www.kingtraining.com 

Oracle 12c New Features 
•  SELECT improvements: Top-n & Pagination, 

pattern matching, outer join improvements 
•  Table definition improvements: expanded 

columns, identity columns, default improvements, 
invisible columns 

•  PL/SQL in WITH clause 
•  Temporal Validity 
•  Online DML operations 
•  Truncate CASCADE 
•  EBR improvements 
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New SQL Developer 
•  Oracle SQL Developer 4.0 Early Adopter 2 

is now available for download 
•  Many new features & supports Oracle 12c 

(still a couple of “wrinkles” in Early Adopter release …) 
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Top-N & Pagination 
•  Oracle 12c adds “top-n” type queries and 

paginated queries 
– FETCH  FIRST/LAST nn ROWS 

   FIRST/LAST n PERCENT ROWS 
– OFFSET  nn ROWS 

•  Optimizer uses analytics under the covers 
to make this work 
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Top-N: Base Query 
•  Original query uses “rownum” – note 

sequence of data 
select ename,sal from emp 
   where rownum < 5 order by sal desc; 
-- 
ENAME             SAL 
---------- ---------- 
JONES            2975  
ALLEN            1600  
WARD             1250  
SMITH             800  
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Top-N: First nn ROWS 
•  Here the first five rows (by value) are 

selected; note no need for analytics 
 
select ename,sal from emp 
    order by sal desc 
    fetch first 5 rows only; 
 
ENAME             SAL 
---------- ---------- 
KING             5000  
SCOTT            3000  
FORD             3000  
JONES            2975  
BLAKE            2850  
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Pagination 
•  The OFFSET clause may start processing 

at a given row; when (optionally) paired 
with FETCH allows pagination in query  

select ename,sal from emp 
   order by sal desc 
   offset 2 rows   
   fetch first 5 rows only; 
 
ENAME             SAL 
---------- ---------- 
FORD             3000  
JONES            2975  
BLAKE            2850  
CLARK            2450  
ALLEN            1600  
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Top-N: Percentage 
•  Top-N may use a percentage rather than a 

number of rows 
 
select ename,sal from emp 
   order by sal desc 
   offset 2 rows   
   fetch first 5 percent rows only; 
 
ENAME             SAL 
---------- ---------- 
SCOTT            3000 
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Matching Patterns 
•  Enhanced ability to use Regular 

Expressions enabled by Oracle 12c’s 
MATCH_RECOGNIZE  

•  Using syntax similar to the MODEL clause 
and Analytics rows may be compared to 
other rows using Regular Expressions  
(beyond capabilities of LAG/LEAD) 



55 
Copyright @ 2013, John Jay King http://www.kingtraining.com 

MATCH_RECOGNIZE 
•  MATCH_RECOGNIZE includes: 

– PARTITION  Segregate data 
– ORDER BY   Order with partitions 
– MEASURES  Define output columns 
– AFTER   Return single/multiple rows 
– PATTERN   Define regular expression 
– DEFINE   Specify expression tags 



56 
Copyright @ 2013, John Jay King http://www.kingtraining.com 

Sample MATCH_RECOGNIZE 
•  The code on the following pages creates a 

report illustrating sales patterns for a 
specific product over time 
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Sample Code 1 
•  SELECT uses query in from clause to 

aggregate SH.SALES data by prod_id and 
day (truncated time_id) 

select * from  
 (select prod_id,trunc(time_id)time_id, 
    sum(amount_sold) amount_sold from sh.sales  
    where prod_id = 148  

 and extract(year from time_id) in (2000,2001)  
 group by prod_id, trunc(time_id)) 
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Sample Code 2 
match_recognize ( 
   partition by prod_id 
   order by time_id 
   measures to_char(strt.time_id,'yyyy-mm-dd') as 
start_date, 
   to_char(last(down.time_id),'yyyy-mm-dd') as bottom_date, 
   to_char(last(up.time_id) ,'yyyy-mm-dd') as   end_date, 
   last(round(down.amount_sold)) as bottom_amt, 
   last(round(up.amount_sold)) as end_amt 
   --one row per match 
   after match skip to last up 
   pattern (strt down+ up+) 
   define 
     down as down.amount_sold < prev(down.amount_sold), 
     up as up.amount_sold > prev(up.amount_sold) 
   ) matcher 
order by matcher.prod_id, matcher.start_date 
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Results 
•  Here are the results and a sample of the 

data to see what happened 
•  Two result rows: 
 148 2000-01-18 2000-01-23 2000-01-27    1191      1333 
 148 2000-01-27 2000-02-02 2000-02-14     887      2148 
 

•  Matching base data rows: 
 
 148 18-JAN-00      2229 
 148 23-JAN-00      1191 
 148 27-JAN-00      1333 
 148 02-FEB-00       887 
 148 14-FEB-00      2148 
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Outer Join Improvements 
•  Oracle 12c expands the use of the 

“traditional” Oracle Outer Join syntax (+) to 
make it more useful 

•  The (+) notation to create null rows may 
now be used for multiple tables & columns 
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Outer Join Example 
 
select region_name, country_name, department_name, city, 
count(employee_id) nbr_emps 
  from hr.regions r, hr.countries c, hr.locations l,    

  hr.departments d, hr.employees e 
  where r.region_id = c.region_id(+) 
    and c.country_id = l.country_id(+) 
    and l.location_id = d.location_id(+) 
    and d.department_id = e.department_id(+) 
    group by region_name,country_name,department_name, city 
    order by region_name,country_name,department_name, city 
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CROSS & OUTER APPLY 
•  Oracle 12c adds the ability to JOIN values 

in a generated table collection to regular 
tables using: 
– CROSS APPLY   Join table to generated 

     collection when values 
     match 

– OUTER APPLY   Join table to generated 
     collection when values  
     match and create 
     matches for non-match  
     rows too 
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Example APPLY - Setup 
create or replace type name_table_type  

 as table of varchar2(100); 
create or replace function department_employees 
(in_department_id varchar2) 
   return name_table_type 
is 
  mynames name_table_type; 
begin 
  select cast(collect(last_name || ', ' || first_name)  

   as name_table_type) 
     into mynames 
     from hr.employees 
     where department_id = in_department_id; 
  return mynames; 
end; 
/ 
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Example APPLY 
select * 
  from hr.departments d 
       cross apply 
       department_employees(d.department_id) dept_emps; 
 
select * 
  from hr.departments d 
       outer apply 
       department_employees(d.department_id) dept_emps; 
 
select department_name 
      ,department_employees(department_id) deptemps 
  from hr.departments; 
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New Column Sizes 
•  Oracle 12c increases the maximum size of 

three datatypes to 32,767 (4,000 before) 
– VARCHAR2 
– NVARCHAR2 
– RAW 

•  Not default: DBA must set init.ora 
max_sql_string_size EXTENDED 

•  Stored out of line as CLOB when > 4k 
•  Now matches PL/SQL variables 
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Identity Columns 
•  Oracle has had SEQUENCES for years; 

the IDENTITY column allows use of a 
SEQUENCE as part of a column definition 
(much like some competitor databases) 
– Use “GENERATED AS IDENTITY” clause 
– Default starts with 1 increments by 1 
– May set values using START WITH and 

INCREMENT BY 



67 
Copyright @ 2013, John Jay King http://www.kingtraining.com 

Identity Example 1 
create table id_test1 
(id number generated as identity, 
 col1 varchar2(10)); 
-- 
insert into id_test1 (col1) values ('A'); 
insert into id_test1 (col1) values ('B'); 
insert into id_test1 (col1) values ('C'); 
-- 
select * from id_test1; 
 ID COL1      
---------- ---------- 
         1 A           
         2 B           
         3 C  
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Identity Example 2 
create table id_test1 
(id number generated as identity ( 

 start with 10 increment by 11), 
 col1 varchar2(10)); 
-- 
insert into id_test1 (col1) values ('A'); 
insert into id_test1 (col1) values ('B'); 
insert into id_test1 (col1) values ('C'); 
-- 
select * from id_test1;  
 ID COL1      
---------- ---------- 
        10 A           
        21 B           
        32 C  
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Session-Specific Sequence 
•  Many systems take advantage of Oracle 

Global Temporary Tables 
•  Rows in Global Temporary Tables either for 

the life of the session or transaction 
•  CREATE SEQUENCE now offers a 

SESSION parameter allowing a sequence 
to be reset each time the Global Temporary 
Table is reinitialized (default is GLOBAL) 

create sequence session_sample_seq 
  start with 1 increment by 1 
  session; 
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Enhanced Column DEFAULT 
•  Oracle 12c enhances the capabilities of 

column default settings 
– Columns may be set to a default when NULL 

values are INSERTed 
– Column default values may be based upon a 

SEQUENCE (.nextval or .currval) 
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Example Defaults 
drop sequence default_test_seq; 
drop table default_test; 
create sequence default_test_seq start with 1 increment by 1; 
create table default_test 
(id number default default_test_seq.nextval not null, 
 col1 varchar2(10) , 
 col2 varchar2(10)default on null 'N/A' not null); 
insert into default_test (col1,col2) values ('A',null); 
insert into default_test (col1) values ('B'); 
insert into default_test (col1,col2) values ('C','test'); 
select * from default_test; 
 ID      COL1       COL2      
---------- ---------- ---------- 
         1 A          N/A         
         2 B          N/A         
         3 C          test  
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Invisible Columns 
•  Columns may be marked “INVISIBLE” in 

CREATE/ALTER table 
•  Invisible columns do not appear in 

SQL*Plus DESCRIBE or SQL Developer 
column display (does show in SQL 
Developer table column list) 

•  Invisible columns may be inserted into or 
omitted from INSERT statements 

•  When made visible columns appear at end 
of table 
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Invisible Column Example 1 
drop table invisible_test; 
create table invisible_test ( 
 id  number, 
 col1 varchar2(10), 
 col2 varchar2(10) invisible, 
 col3 varchar2(10)); 
desc invisible_test; 
Name Null Type          
---- ---- ------------  
ID        NUMBER        
COL1      VARCHAR2(10)  
COL3      VARCHAR2(10)  
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Invisible Column Example 2 
insert into invisible_test 
(col1,col2,col3) values (1,'a','a'); 
insert into invisible_test 
(col1,col3) values (2,'b'); 
insert into invisible_test values (3,'c'); 
select * from invisible_test; 
alter table invisible_test modify col2 visible; 
desc invisible_test; 
Name Null Type          
---- ---- ------------  
ID        NUMBER        
COL1      VARCHAR2(10)  
COL3      VARCHAR2(10)  
COL2      VARCHAR2(10)  
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PL/SQL in WITH 
•  Oracle 12c allows definition of PL/SQL 

Functions and Procedures using SQL’s 
Common Table Expression (WITH) 
– Defining PL/SQL locally reduces context-switch 

costs 
– Local PL/SQL overrides stored PL/SQL with 

the same name 
– Local PL/SQL is not stored in the database 
– Local PL/SQL is part of the same source code 

as the SQL that uses it 
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Example PL/SQL in WITH 
with function times_42(inval number) 
 return number 
as 
begin 
  return inval * 42; 
end; 
select channel_id,count(*) nbr_rows, 

 sum(quantity_sold) qtysold, 
 sum(times_42(cust_id)) cust42 

  from sh.sales 
  group by channel_id 
  order by channel_id 
/ 
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Temporal Validity 
•  Oracle 12c adds options to CREATE 

TABLE, ALTER TABLE, and SELECT 
allowing use of time dimensions in 
conjunction with FLASHBACK QUERY 
– Periods are defined using TIMESTAMP 

columns 
– CREATE/ALTER TABLE’s PERIOD clause 

specifies period starting and ending times 
– SELECT statements AS OF PERIOD FOR 

clause allows selection of rows falling within 
periods 



78 
Copyright @ 2013, John Jay King http://www.kingtraining.com 

Temporal Validity Example 
CREATE TABLE temporal_emp_test( 
  employee_id NUMBER, 
  last_name   VARCHAR2(50), 
  start_time  TIMESTAMP, 
  end_time    TIMESTAMP, 
  PERIOD FOR my_time_period (start_time, end_time)); 
INSERT INTO temporal_emp_test  

 VALUES (1000, 'King', '01-Jan-10', '30-Jun-11'); 
INSERT INTO temporal_emp_test  

 VALUES (1001, 'Manzo', '01-Jan-11', '30-Jun-11'); 
INSERT INTO temporal_emp_test  

 VALUES (1002, 'Li', '01-Jan-12', null); 
SELECT * from temporal_emp_test AS OF PERIOD  

 FOR my_time_period TO_TIMESTAMP('01-Jun-10'); 
SELECT * from temporal_emp_test VERSIONS PERIOD FOR 

 my_time_period BETWEEN TO_TIMESTAMP('01-Jun-10')  
    AND TO_TIMESTAMP('02-Jun-10'); 
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Online DDL 
•  Some DDL statements may be performed 

ONLINE in Oracle 12c, eliminating the DML 
lock from earlier releases 
– DROP INDEX … ONLINE 
– ALTER INDEX … UNUSABLE ONLINE 
– ALTER TABLE … SET UNUSED … ONLINE … 
– ALTER TABLE … DROP … ONLINE 
– ALTER TABLE …  

 MOVE PARTITION … ONLINE 
– ALTER TABLE …  

 MOVE SUBPARTITION …. ONLINE 
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TRUNCATE … CASCADE 
•  Oracle 12c’s TRUNCATE statement allows 

the use of CASCADE to eliminate values in 
tables that are referentially connected 

 
TRUNCATE TABLE ID_TEST1 CASCADE; 
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EBR Improvements 
•  Time does not permit detailed EBR coverage 
•  Edition-Based Redefinition made its debut in 

Oracle 11g and provides an ability to 
significantly reduce downtime due to 
changes in PL/SQL and/or SQL 

•  Oracle 12c removes some limitations 
present in 11g’2 implementation of EBR: 
– Materialized Views and Types may be editioned 
– Virtual Columns may be used with EBR 



82 
Copyright @ 2013, John Jay King http://www.kingtraining.com 

Wrapping it all Up 

•  Oracle 11g and Oracle 12c have both added significant 
new functionality to the already robust Oracle 
database environment 

•  Oracle 12c represents the first major architectural 
change to Oracle since Version 6! 

•  With the release of Oracle 12c it’s probably time for your 
shop to finally move to 11g R2 

•  While an emphasis is sometimes placed on the features 
of Oracle that support the Data Base Administrator, this 
paper shows many Developer-oriented features of great 
usefulness 
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•  End 
 


