
1
Copyright @ 2013, John Jay King http://www.kingtraining.com

Oracle 12c and Oracle 11gR2
New Features For Developers

Presented by: John Jay King

Download this paper from: http://www.kingtraining.com

2
Copyright @ 2013, John Jay King http://www.kingtraining.com

Session Objectives

•  Learn new Oracle 12c and Oracle 11gR2
features that are geared to developers

•  Know how existing database features have
been improved in Oracle

•  Become aware of some DBA-oriented
features that impact developers

3
Copyright @ 2013, John Jay King http://www.kingtraining.com

Who Am I?

•  John King – Partner, King Training Resources
•  Oracle Ace Director
•  Member Oak Table Network
•  Providing training to Oracle and IT community for

over 25 years – http://www.kingtraining.com
•  “Techie” who knows Oracle, ADF, SQL, Java, and

PL/SQL pretty well (along with many other topics)
•  Leader in Service Oriented Architecture (SOA)
•  Member of ODTUG (Oracle Development Tools

User Group) Board of Directors
•  Charter member of IOUG

4
Copyright @ 2013, John Jay King http://www.kingtraining.com

Oracle 11g

•  Environment changes
•  New/improved SQL & PL/SQL statements
•  SQL & PL/SQL Results Caches
•  Java, JDBC, and SQLJ improvements
•  New Analytic (and other) Functions
•  Java and XML Enhancements
•  Pro*C/Pro*COBOL & OCI Enhancements
•  Edition-Based Redefinition (EBR)

5
Copyright @ 2013, John Jay King http://www.kingtraining.com

“Recent” Releases
•  Oracle 11g R1 August 2007
•  Oracle 11g R2 September 2009
•  Oracle 12c R1 June 2013

6
Copyright @ 2013, John Jay King http://www.kingtraining.com

Oracle 11g R2

•  Results Cache Improvements
•  New Analytic Functions
•  XML Enhancements
•  Java Enhancements
•  Pro*C/Pro*COBOL Enhancements
•  Edition-Based Redefinition (EBR)

7
Copyright @ 2013, John Jay King http://www.kingtraining.com

Oracle 12c – Exciting DBA Stuff
•  Multi-tenant Architecture:

(first architecture change to Oracle since V6 in 1988!)
– Container Database (CDB)
– Pluggable Database(s) (PDB)

•  Performance Improvements:
–  Improved optimization
– Enhanced Statistics & New Histograms
– Adaptive Execution Plans

•  More cool stuff (watch OOW announcements…)

8
Copyright @ 2013, John Jay King http://www.kingtraining.com

Oracle 12c – On Our Agenda
•  SELECT improvements: Top-n & Pagination,

pattern matching, outer join improvements
•  Table definition improvements: expanded

columns, identity columns, default improvements,
invisible columns

•  PL/SQL in WITH clause
•  Temporal Validity
•  Online DML operations
•  Truncate CASCADE
•  EBR improvements

9
Copyright @ 2013, John Jay King http://www.kingtraining.com

Virtual Columns
•  Beginning with Oracle 11g tables may now include virtual

columns (dynamic values; not stored)
•  Virtual columns obtain their value by evaluating an

expression that might use:
–  Columns from the same table
–  Constants
–  Function calls (user-defined functions or SQL functions)

•  Virtual columns might be used to:
–  Eliminate some views
–  Control table partitioning (DBA stuff)
–  Manage the new "binary" XMLType data

•  Virtual columns may be indexed!

10
Copyright @ 2013, John Jay King http://www.kingtraining.com

Creating Virtual Column
CREATE TABLE NEWEMP
 (EMPNO NUMBER(4) NOT NULL,
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7, 2),
 COMM NUMBER(7, 2),
 INCOME NUMBER(9,2)
 GENERATED ALWAYS
 AS (NVL("SAL",0)+NVL("COMM",0))
 VIRTUAL,

 DEPTNO NUMBER(2));

•  Datatype defaults if not specified (based upon expression)
•  Expression result appears as data in table but is generated
•  “generated always” and “virtual” not required, but add clarity

11
Copyright @ 2013, John Jay King http://www.kingtraining.com

Adding Virtual Columns

•  Oracle 11g also allows specification of Virtual Columns
via ALTER TABLE

 alter table myemp
 add (totpay as
 (nvl(sal,0)+nvl(comm,0)));

12
Copyright @ 2013, John Jay King http://www.kingtraining.com

PIVOT/UNPIVOT
•  Oracle joins other vendors by adding the PIVOT clause to

the SELECT statement
•  Adding a PIVOT clause to a SELECT allows rotation of

rows into columns while performing aggregation to create
cross-tabulation queries

•  The PIVOT clause:
–  Computes aggregations (implicit GROUP BY of all columns not in

PIVOT clause)
–  Output of all implicit grouping columns followed by new columns

generated by PIVOT
•  UNPIVOT performs the same activity but converts

columns into ROWS (does not “undo” PIVOT)
•  Clever developers have used PL/SQL and/or CASE to

achieve PIVOT results before, but now it is part of
Oracle's standard SQL

13
Copyright @ 2013, John Jay King http://www.kingtraining.com

select * from
 (select job,deptno,income from newemp) query1
 pivot (avg(income)
 for deptno in (10 AS ACCOUNTING,

 20 AS RESEARCH,
 30 AS SALES))

 order by job;

Job ACCOUNTING RESEARCH SALES
ANALYST 30000
CLERK 13000 9500 9500
MANAGER 24500 29750 28500
PRESIDENT 50000
SALESMAN 19500

PIVOT Example

14
Copyright @ 2013, John Jay King http://www.kingtraining.com

UNPIVOT Example
select * from pivot_emp_table
 unpivot include nulls
 (avgpay for dept in (ACCOUNTING,RESEARCH,SALES))
 order by job;

JOB DEPT AVGPAY
ANALYST ACCOUNTING
ANALYST RESEARCH 30000
ANALYST SALES
 /*** more rows ***/
SALESMAN ACCOUNTING
SALESMAN RESEARCH
SALESMAN SALES 19500

15
Copyright @ 2013, John Jay King http://www.kingtraining.com

Invisible Indexes
•  Sometimes the optimizer selects the wrong index

–  Beginning with Oracle 11g it is possible to make an
index “invisible” to the optimizer

–  Use ALTER TABLE to make it visible/invisible

create index mytab_ix on mytab(mykey) invisible

alter intex mytab_ix invisible;

alter index mytab_ix visible;

16
Copyright @ 2013, John Jay King http://www.kingtraining.com

Results Caching

•  Caching is nothing new to Oracle;
Oracle has cached data for a long time now

•  What’s new is the caching of results…
•  This is similar to how a Materialized View

works but is more-dynamic
•  New “result_cache” hint asks Oracle to

cache query results

17
Copyright @ 2013, John Jay King http://www.kingtraining.com

Result Cache – Test Query
select cust_last_name || ', ' || cust_first_name cust_name
 ,cust_city
 ,prod_id
 ,count(*) nbr_sales
 from sh.customers cust
 join sh.sales sales
 on cust.cust_id = sales.cust_id
 where country_id = 52789
 and prod_id in (120,126)
 group by cust_last_name,cust_first_name,cust_city,prod_id
 having count(*) > 10
 order by cust_name,nbr_sales;

•  This query was run three times in succession with
timing turned on; resulting timings were
–  Elapsed: 00:00:00.67
–  Elapsed: 00:00:00.46
–  Elapsed: 00:00:00.37

18
Copyright @ 2013, John Jay King http://www.kingtraining.com

Using Result Cache
select /*+ result_cache */ cust_last_name || ', ' || cust_first_name

cust_name
 ,cust_city
 ,prod_id
 ,count(*) nbr_sales
 from sh.customers cust
 join sh.sales sales
 on cust.cust_id = sales.cust_id
 where country_id = 52789
 and prod_id in (120,126)
 group by cust_last_name,cust_first_name,cust_city,prod_id
 having count(*) > 10
 order by cust_name,nbr_sales;

•  This query was run three times in succession with
timing turned on; resulting timings were
–  Elapsed: 00:00:00.23
–  Elapsed: 00:00:00.01
–  Elapsed: 00:00:00.03

19
Copyright @ 2013, John Jay King http://www.kingtraining.com

PL/SQL Result Cache
•  PL/SQL allows specification of a result_cache for

function/procedure calls
•  Add the clause “result_cache” just before the

“AS/IS” keyword in the Function and/or
Procedure definition
(Oracle 11g R1 also used now-obsolete
 “relies_on” clause)

•  The results of a call to the Function or Procedure
with a specific set of input parameters is stored
for later re-use

20
Copyright @ 2013, John Jay King http://www.kingtraining.com

PL/SQL Result Cache - Code
CREATE OR REPLACE FUNCTION RESULT_CACHE_ON

(in_cust_id sh.customers.cust_id%type, in_prod_id
sh.sales.prod_id%type)

RETURN number
RESULT_CACHE -- RELIES_ON (SH.CUSTOMERS, SH.SALES)
authid definer
AS
 sales number(7,0);
BEGIN
select count(*) nbr_sales into sales
 from sh.customers cust join sh.sales sales
 on cust.cust_id = sales.cust_id
 where cust.cust_id = in_cust_id
 and prod_id = in_prod_id;
 return sales;
EXCEPTION
 when no_data_found then return 0;
END RESULT_CACHE_ON;

21
Copyright @ 2013, John Jay King http://www.kingtraining.com

PL/SQL Result Cache - Timings
 1* select result_cache_on(4977,120) from dual
RESULT_CACHE_ON(4977,120)

 14
Elapsed: 00:00:00.40

 1* select result_cache_on(4977,120) from dual
RESULT_CACHE_ON(4977,120)

 14
Elapsed: 00:00:00.00

 1* select result_cache_on(4977,120) from dual
RESULT_CACHE_ON(4977,120)

 14
Elapsed: 00:00:00.01

22
Copyright @ 2013, John Jay King http://www.kingtraining.com

PL/SQL Enhancements
•  Oracle 11g’s changes to PL/SQL are very interesting to

the developer:
–  PL/SQL has been improved to include all of the

XMLType, BLOB, Regular Expression, and other
functionality added to SQL

–  Improvements have been made to the compiler
–  New PL/SQL data types
–  Sequence number use is easier
–  “continue” added for loop control
–  CALL syntax has improved

23
Copyright @ 2013, John Jay King http://www.kingtraining.com

•  In previous releases, the PL/SQL compiler required a
standalone “C” compiler

•  Oracle 11g now provides a native compiler for PL/SQL
eliminating the need for a separate compiler
ALTER PROCEDURE my_proc COMPILE
PLSQL_CODE_TYPE=NATIVE REUSE SETTINGS;

ALTER PROCEDURE my_proc COMPILE
PLSQL_CODE_TYPE=INTERPRETED
 REUSE SETTINGS;

ALTER SESSION SET
PLSQL_CODE_TYPE=NATIVE;

ALTER SESSION SET
PLSQL_CODE_TYPE=INTERPRETED;

Compiler Enhancement

24
Copyright @ 2013, John Jay King http://www.kingtraining.com

Compound Triggers
•  Compound triggers allow the same code to be shared

across timing points

(previously accomplished using packages most of the
time)

•  Compound triggers have unique declaration and code
sections for timing point

•  All parts of a compound trigger share a common state that
is initiated when the triggering statement starts and is
destroyed when the triggering statement completes (even
if an error occurs)

25
Copyright @ 2013, John Jay King http://www.kingtraining.com

Compound Trigger Timing
•  If multiple compound triggers exist for the same table;

they fire together:
–  All before statement code fires first
–  All before row code fires next
–  All after row code fires next
–  All after statement code finishes

•  The sequence of trigger execution can be controlled only
using the FOLLOWS clause

26
Copyright @ 2013, John Jay King http://www.kingtraining.com

Compound Trigger Syntax

CREATE TRIGGER compound_trigger
 FOR UPDATE OF sal ON emp
 COMPOUND TRIGGER
 -- Global Declaration Section
 BEFORE STATEMENT IS
 BEGIN …
 BEFORE EACH ROW IS
 BEGIN …
 AFTER EACH ROW IS
 BEGIN …
END compound_trigger;
/

27
Copyright @ 2013, John Jay King http://www.kingtraining.com

TRIGGER … FOLLOWS
•  Oracle 11g adds the “FOLLOWS” clause to trigger

creation allowing control over the sequence of execution
when multiple triggers share a timing point

•  FOLLOWS indicates the including trigger should happen
after the named trigger(s); the named trigger(s) must
already exist

•  If some triggers use “FOLLOWS” and others do not; only
the triggers using “FOLLOWS” are guaranteed to execute
in a particular sequence

28
Copyright @ 2013, John Jay King http://www.kingtraining.com

How FOLLOWS Works
•  FOLLOWs only distinguishes between triggers at the

same timing point:
–  BEFORE statement
–  BEFORE row
–  AFTER row
–  AFTER statement
–  INSTEAD OF

•  In the case of a compound trigger, FOLLOWS applies
only to portions of triggers at the same timing point (e.g. if
a BEFORE ROW simple trigger names a compound
trigger with FOLLOWS the compound trigger must have a
BEFORE ROW section and vice versa

29
Copyright @ 2013, John Jay King http://www.kingtraining.com

FOLLOWS Syntax
CREATE OR REPLACE TRIGGER myTrigger
 BEFORE/AFTER/INSTEAD OF someEvent
 FOR EACH ROW
 FOLLOWS someschema.otherTrigger
 WHEN (condition=true)
 /* trigger body */

•  FOLLOWS may specify a list (and designate sequence)
FOLLOWS otherTrigger1, otherTrigger2, etc

30
Copyright @ 2013, John Jay King http://www.kingtraining.com

New PL/SQL Datatypes
•  Oracle 11g adds three new PL/SQL datatypes:

Simple_integer, Simple_float, Simple_double
–  The three new datatypes take advantage of native

compilation features providing faster arithmetic via
direct hardware implementation

–  SIMPLE_INTEGER provides a binary integer that is
neither checked for nulls nor overflows

–  SIMPLE_INTEGER values may range from
-2147483648 to 2147483647 and is always NOT NULL

–  Likewise, SIMPLE_FLOAT and SIMPLE_DOUBLE
provide floating point without null or overflow checks

31
Copyright @ 2013, John Jay King http://www.kingtraining.com

Example SIMPLE_INTEGER
declare
-- mytestvar pls_integer := 2147483645;
 mytestvar simple_integer := 2147483645;
begin
 loop

 mytestvar := mytestvar + 1;
 dbms_output.put_line('Value of mytestvar is now '

 || mytestvar);
 exit when mytestvar < 10;
 end loop;
end;
Results in:
Value of mytestvar is now 2147483646
Value of mytestvar is now 2147483647
Value of mytestvar is now -2147483648

32
Copyright @ 2013, John Jay King http://www.kingtraining.com

Sequences in PL/SQL
•  Sequence values NEXTVAL and CURRVAL may be use

in PL/SQL assignment statement

 myvar := myseq.nextval;

33
Copyright @ 2013, John Jay King http://www.kingtraining.com

•  CONTINUE “iterates” a loop; branching over the rest of the
code in the loop and returning to the loop control statement

 begin
 dbms_output.put_line('Counting down to blastoff!');
 for loopctr in reverse 1 .. ctr loop
 if loopctr in (4,2) then
 continue;
 end if;
 dbms_output.put_line(to_char(loopctr));
 end loop;
 dbms_output.put_line('Blast Off!');
end;
Counting down to blastoff!
6
5
3
1
Blast Off!

CONTINUE

<-Values “4” and “2” do not appear in the output

34
Copyright @ 2013, John Jay King http://www.kingtraining.com

•  REGEXP_COUNT counts the number of times a pattern
occurs in a source string
select ename,regexp_count(ename,'l',1,'i') from emp;
SMITH 0
ALLEN 2
WARD 0
JONES 0
MARTIN 0
BLAKE 1
/** more rows ***/
MILLER 2
–  string expression and/or column to match pattern
–  Regular Expression pattern
–  Beginning position in the source string (default=1)
–  Match parameters (i = case insensitive, c = case sensitive, m = multiple

line source delimited by ‘^’ or ‘$’, n = matches ‘.’ newline characters
(default no), and x = ignore whitespace characters (default is to match)

REGEXP_COUNT

35
Copyright @ 2013, John Jay King http://www.kingtraining.com

•  PL/SQL allows function and procedure parameters to be
specified in two ways; by position and by name

•  With Oracle 11g SQL, parameter types may now be mixed
•  Given the following function:

CREATE OR REPLACE
FUNCTION TEST_CALL (inval1 IN NUMBER, inval2 IN
NUMBER,
 inval3 IN NUMBER) RETURN NUMBER AS

BEGIN
 RETURN inval1 + inval2 + inval3;
END TEST_CALL;

•  The following calls all now work:
test_call(vara,varb,varc)
test_call(inval3=>varc,inval1=>vara,inval2=>varb)
test_call(vara,inval3=>varc,inval2=>varb)

CALL with Mixed Parameters

36
Copyright @ 2013, John Jay King http://www.kingtraining.com

LISTAGG (11gR2)
•  LISTAGG provides lists of lower-level columns after

aggregation

select department_id,
 listagg(last_name, ', ')
 within group
 (order by last_name) dept_employees
 from hr.employees
 where department_id in (20,30)
 group by department_id
 order by department_id;

 DEPARTMENT_ID DEPT_EMPLOYEES

 ------------- ---

 20 Fay, Hartstein

 30 Baida, Colmenares, Himuro, Khoo,
 Raphaely, Tobias

37
Copyright @ 2013, John Jay King http://www.kingtraining.com

NTH_VALUE (11gR2)
•  NTH_VALUE simplifies the process of retrieving the “n-th”

value

 select distinct department_id
 ,first_value(salary) ignore nulls

 over (partition by department_id order by salary desc
 rows between unbounded preceding and unbounded following)
 "1st"

 ,nth_value(salary,2) ignore nulls
 over (partition by department_id order by salary desc
 rows between unbounded preceding and unbounded following)
 "2nd"

 ,nth_value(salary,3) ignore nulls
 over (partition by department_id order by salary desc
 rows between unbounded preceding and unbounded following)
 "3rd"

 from hr.employees
 where department_id = 80
 order by department_id, "1st", "2nd", "3rd";

 DEPARTMENT_ID 1st 2nd 3rd
 ------------- ---------- ---------- ----------

 80 14000 13500 12000

38
Copyright @ 2013, John Jay King http://www.kingtraining.com

Recursive Subquery
•  Oracle’s CONNECT BY has allowed definition of a

hierarchical relationship for years; now an ISO-standard
option is available:

with empConnect(last_name,employee_id,manager_id,lvl)
 as (select last_name, employee_id, manager_id, 1 lvl2

 from hr.employees where manager_id is null
 union all
 select emp.last_name, emp.employee_id,

 emp.manager_id, ec.lvl+1
 from hr.employees emp, empConnect ec
 where emp.manager_id = ec.employee_id)
 SEARCH DEPTH FIRST BY last_name SET order_by
select lvl,lpad(' ' ,3*lvl, ' ')||last_name empname
 from empConnect
 order by order_by

39
Copyright @ 2013, John Jay King http://www.kingtraining.com

External Directory Features
•  With Oracle 11gR2 the EXECUTE privilege may be

granted for Directory objects; allowing execution of code
stored in host operating system files

•  Pre-processing programs may be specified for External
files used via Oracle Loader
(perhaps to unzip, decrypt, translate,…)

40
Copyright @ 2013, John Jay King http://www.kingtraining.com

Data Pump “Legacy Mode”
•  Oracle 11gR2 has provided “legacy mode” for Oracle

Data Pump
•  Allows execution of existing Import/Export scripts
•  When Data Pump recognizes Import/Export parameters it

automatically switches to “legacy mode” and executes as
desired

41
Copyright @ 2013, John Jay King http://www.kingtraining.com

11gR2 XML Enhancements
•  Binary XML has been enhanced with significant

performance improvements
•  Default XMLType storage is now Binary using SecureFile

(used to be Unstructured)
•  Unstructured XMLType is “deprecated”
•  XMLIndex improved allowing indexing for all XMLTypes

and for fragments via XPath and partitioning
•  Partitioning now allowed for XMLType data

42
Copyright @ 2013, John Jay King http://www.kingtraining.com

Binary XML
•  Oracle continues its XML leadership in Oracle 11g
•  Biggest change is the addition of a new “binary” XMLType

–  “binary xml” is a third method for storing XML data in
the database

–  “structured” and “unstructured” XMLType still
supported

–  Oracle 11g’s XML processors includes a binary XML
encoder, decoder, and token manager

–  XML 1.0 text may be parsed via SAX events with or
without a corresponding schema into “binary” XML form

–  “binary” XMLType allows optimization of some XML
applications by reducing memory and CPU expense

43
Copyright @ 2013, John Jay King http://www.kingtraining.com

Next-Gen. LOB: Securefile
•  Oracle 11g provides a new, more-secure, faster

mechanism for storing Large Objects
(e.g. XMLType data)

•  LOB column specifications in CREATE TABLE or ALTER
TABLE include STORE AS SECUREFILE

•  SECUREFILE provides compression and encryption for
Large OBjects (LOBs)
–  Oracle 11g will detect duplicate LOB data and conserve

space by only storing one copy
("de-duplication" if SECUREFILE is specified).

–  PL/SQL packages and OCI functions have been added
to take advantage of SECUREFILE LOBs

–  SECUREFILE lobs provide higher performance through
reduced size and resource use.

44
Copyright @ 2013, John Jay King http://www.kingtraining.com

XML Indexes
•  Replaces CTXSYS.CTXXPATH indexes
•  XML-specific index type, indexes document XML structure
•  Designed to improve indexing unstructured and hybrid XML
•  Determines XPath expressions for a document's XML tags
•  Indexes singleton (scalar) nodes and items that occur

multiple times
•  XMLIndex record document child, descendant, and attribute

axes (hierarchy) information
•  XMLIndex is be design general (like CTXXPATH) rather

than specific like B-tree indexes
•  XMLIndex applies to all possible XPath document targets
•  XMLIndex may be used for XMLQuery, XMLTable,

XMLExists, XMLCast, extract, extractValue, and existsNode
•  XMLIndex helps anywhere in the query, not just in the

WHERE clause

45
Copyright @ 2013, John Jay King http://www.kingtraining.com

Edition-Based Redefinition (EBR)
•  The quest to eliminate downtime has led to a desire to

provide "Online Application Upgrade" where an
application need not be taken down when upgrades are
applied
–  Users of the existing system continue uninterrupted
–  Users of the upgraded system use new code

immediately

46
Copyright @ 2013, John Jay King http://www.kingtraining.com

How?
•  Oracle 11gR2 Edition-Based Redefinition adds a new

non-schema "edition" of an application including all of the
original edition's PL/SQL, views, and synonyms; the new
edition may be modified as desired then tested and
deployed without impacting the users of the original
edition

•  Once the new edition is ready for complete rollout it may
be released

•  This is accomplished by a combination of:
–  Editioning Views

 Showing the data "as of" a specific edition
–  Cross-Edition Triggers

 Triggers keeping "old" and "new" editions
 synchronized

47
Copyright @ 2013, John Jay King http://www.kingtraining.com

Oracle 12c New Features
•  SELECT improvements: Top-n & Pagination,

pattern matching, outer join improvements
•  Table definition improvements: expanded

columns, identity columns, default improvements,
invisible columns

•  PL/SQL in WITH clause
•  Temporal Validity
•  Online DML operations
•  Truncate CASCADE
•  EBR improvements

48
Copyright @ 2013, John Jay King http://www.kingtraining.com

New SQL Developer
•  Oracle SQL Developer 4.0 Early Adopter 2

is now available for download
•  Many new features & supports Oracle 12c

(still a couple of “wrinkles” in Early Adopter release …)

49
Copyright @ 2013, John Jay King http://www.kingtraining.com

Top-N & Pagination
•  Oracle 12c adds “top-n” type queries and

paginated queries
– FETCH FIRST/LAST nn ROWS

 FIRST/LAST n PERCENT ROWS
– OFFSET nn ROWS

•  Optimizer uses analytics under the covers
to make this work

50
Copyright @ 2013, John Jay King http://www.kingtraining.com

Top-N: Base Query
•  Original query uses “rownum” – note

sequence of data
select ename,sal from emp
 where rownum < 5 order by sal desc;
--
ENAME SAL
---------- ----------
JONES 2975
ALLEN 1600
WARD 1250
SMITH 800

51
Copyright @ 2013, John Jay King http://www.kingtraining.com

Top-N: First nn ROWS
•  Here the first five rows (by value) are

selected; note no need for analytics

select ename,sal from emp
 order by sal desc
 fetch first 5 rows only;

ENAME SAL
---------- ----------
KING 5000
SCOTT 3000
FORD 3000
JONES 2975
BLAKE 2850

52
Copyright @ 2013, John Jay King http://www.kingtraining.com

Pagination
•  The OFFSET clause may start processing

at a given row; when (optionally) paired
with FETCH allows pagination in query

select ename,sal from emp
 order by sal desc
 offset 2 rows
 fetch first 5 rows only;

ENAME SAL
---------- ----------
FORD 3000
JONES 2975
BLAKE 2850
CLARK 2450
ALLEN 1600

53
Copyright @ 2013, John Jay King http://www.kingtraining.com

Top-N: Percentage
•  Top-N may use a percentage rather than a

number of rows

select ename,sal from emp
 order by sal desc
 offset 2 rows
 fetch first 5 percent rows only;

ENAME SAL
---------- ----------
SCOTT 3000

54
Copyright @ 2013, John Jay King http://www.kingtraining.com

Matching Patterns
•  Enhanced ability to use Regular

Expressions enabled by Oracle 12c’s
MATCH_RECOGNIZE

•  Using syntax similar to the MODEL clause
and Analytics rows may be compared to
other rows using Regular Expressions
(beyond capabilities of LAG/LEAD)

55
Copyright @ 2013, John Jay King http://www.kingtraining.com

MATCH_RECOGNIZE
•  MATCH_RECOGNIZE includes:

– PARTITION Segregate data
– ORDER BY Order with partitions
– MEASURES Define output columns
– AFTER Return single/multiple rows
– PATTERN Define regular expression
– DEFINE Specify expression tags

56
Copyright @ 2013, John Jay King http://www.kingtraining.com

Sample MATCH_RECOGNIZE
•  The code on the following pages creates a

report illustrating sales patterns for a
specific product over time

57
Copyright @ 2013, John Jay King http://www.kingtraining.com

Sample Code 1
•  SELECT uses query in from clause to

aggregate SH.SALES data by prod_id and
day (truncated time_id)

select * from
 (select prod_id,trunc(time_id)time_id,
 sum(amount_sold) amount_sold from sh.sales
 where prod_id = 148

 and extract(year from time_id) in (2000,2001)
 group by prod_id, trunc(time_id))

58
Copyright @ 2013, John Jay King http://www.kingtraining.com

Sample Code 2
match_recognize (
 partition by prod_id
 order by time_id
 measures to_char(strt.time_id,'yyyy-mm-dd') as
start_date,
 to_char(last(down.time_id),'yyyy-mm-dd') as bottom_date,
 to_char(last(up.time_id) ,'yyyy-mm-dd') as end_date,
 last(round(down.amount_sold)) as bottom_amt,
 last(round(up.amount_sold)) as end_amt
 --one row per match
 after match skip to last up
 pattern (strt down+ up+)
 define
 down as down.amount_sold < prev(down.amount_sold),
 up as up.amount_sold > prev(up.amount_sold)
) matcher
order by matcher.prod_id, matcher.start_date

59
Copyright @ 2013, John Jay King http://www.kingtraining.com

Results
•  Here are the results and a sample of the

data to see what happened
•  Two result rows:
 148 2000-01-18 2000-01-23 2000-01-27 1191 1333
 148 2000-01-27 2000-02-02 2000-02-14 887 2148

•  Matching base data rows:

 148 18-JAN-00 2229
 148 23-JAN-00 1191
 148 27-JAN-00 1333
 148 02-FEB-00 887
 148 14-FEB-00 2148

60
Copyright @ 2013, John Jay King http://www.kingtraining.com

Outer Join Improvements
•  Oracle 12c expands the use of the

“traditional” Oracle Outer Join syntax (+) to
make it more useful

•  The (+) notation to create null rows may
now be used for multiple tables & columns

61
Copyright @ 2013, John Jay King http://www.kingtraining.com

Outer Join Example

select region_name, country_name, department_name, city,
count(employee_id) nbr_emps
 from hr.regions r, hr.countries c, hr.locations l,

 hr.departments d, hr.employees e
 where r.region_id = c.region_id(+)
 and c.country_id = l.country_id(+)
 and l.location_id = d.location_id(+)
 and d.department_id = e.department_id(+)
 group by region_name,country_name,department_name, city
 order by region_name,country_name,department_name, city

62
Copyright @ 2013, John Jay King http://www.kingtraining.com

CROSS & OUTER APPLY
•  Oracle 12c adds the ability to JOIN values

in a generated table collection to regular
tables using:
– CROSS APPLY Join table to generated

 collection when values
 match

– OUTER APPLY Join table to generated
 collection when values
 match and create
 matches for non-match
 rows too

63
Copyright @ 2013, John Jay King http://www.kingtraining.com

Example APPLY - Setup
create or replace type name_table_type

 as table of varchar2(100);
create or replace function department_employees
(in_department_id varchar2)
 return name_table_type
is
 mynames name_table_type;
begin
 select cast(collect(last_name || ', ' || first_name)

 as name_table_type)
 into mynames
 from hr.employees
 where department_id = in_department_id;
 return mynames;
end;
/

64
Copyright @ 2013, John Jay King http://www.kingtraining.com

Example APPLY
select *
 from hr.departments d
 cross apply
 department_employees(d.department_id) dept_emps;

select *
 from hr.departments d
 outer apply
 department_employees(d.department_id) dept_emps;

select department_name
 ,department_employees(department_id) deptemps
 from hr.departments;

65
Copyright @ 2013, John Jay King http://www.kingtraining.com

New Column Sizes
•  Oracle 12c increases the maximum size of

three datatypes to 32,767 (4,000 before)
– VARCHAR2
– NVARCHAR2
– RAW

•  Not default: DBA must set init.ora
max_sql_string_size EXTENDED

•  Stored out of line as CLOB when > 4k
•  Now matches PL/SQL variables

66
Copyright @ 2013, John Jay King http://www.kingtraining.com

Identity Columns
•  Oracle has had SEQUENCES for years;

the IDENTITY column allows use of a
SEQUENCE as part of a column definition
(much like some competitor databases)
– Use “GENERATED AS IDENTITY” clause
– Default starts with 1 increments by 1
– May set values using START WITH and

INCREMENT BY

67
Copyright @ 2013, John Jay King http://www.kingtraining.com

Identity Example 1
create table id_test1
(id number generated as identity,
 col1 varchar2(10));
--
insert into id_test1 (col1) values ('A');
insert into id_test1 (col1) values ('B');
insert into id_test1 (col1) values ('C');
--
select * from id_test1;
 ID COL1
---------- ----------
 1 A
 2 B
 3 C

68
Copyright @ 2013, John Jay King http://www.kingtraining.com

Identity Example 2
create table id_test1
(id number generated as identity (

 start with 10 increment by 11),
 col1 varchar2(10));
--
insert into id_test1 (col1) values ('A');
insert into id_test1 (col1) values ('B');
insert into id_test1 (col1) values ('C');
--
select * from id_test1;
 ID COL1
---------- ----------
 10 A
 21 B
 32 C

69
Copyright @ 2013, John Jay King http://www.kingtraining.com

Session-Specific Sequence
•  Many systems take advantage of Oracle

Global Temporary Tables
•  Rows in Global Temporary Tables either for

the life of the session or transaction
•  CREATE SEQUENCE now offers a

SESSION parameter allowing a sequence
to be reset each time the Global Temporary
Table is reinitialized (default is GLOBAL)

create sequence session_sample_seq
 start with 1 increment by 1
 session;

70
Copyright @ 2013, John Jay King http://www.kingtraining.com

Enhanced Column DEFAULT
•  Oracle 12c enhances the capabilities of

column default settings
– Columns may be set to a default when NULL

values are INSERTed
– Column default values may be based upon a

SEQUENCE (.nextval or .currval)

71
Copyright @ 2013, John Jay King http://www.kingtraining.com

Example Defaults
drop sequence default_test_seq;
drop table default_test;
create sequence default_test_seq start with 1 increment by 1;
create table default_test
(id number default default_test_seq.nextval not null,
 col1 varchar2(10) ,
 col2 varchar2(10)default on null 'N/A' not null);
insert into default_test (col1,col2) values ('A',null);
insert into default_test (col1) values ('B');
insert into default_test (col1,col2) values ('C','test');
select * from default_test;
 ID COL1 COL2
---------- ---------- ----------
 1 A N/A
 2 B N/A
 3 C test

72
Copyright @ 2013, John Jay King http://www.kingtraining.com

Invisible Columns
•  Columns may be marked “INVISIBLE” in

CREATE/ALTER table
•  Invisible columns do not appear in

SQL*Plus DESCRIBE or SQL Developer
column display (does show in SQL
Developer table column list)

•  Invisible columns may be inserted into or
omitted from INSERT statements

•  When made visible columns appear at end
of table

73
Copyright @ 2013, John Jay King http://www.kingtraining.com

Invisible Column Example 1
drop table invisible_test;
create table invisible_test (
 id number,
 col1 varchar2(10),
 col2 varchar2(10) invisible,
 col3 varchar2(10));
desc invisible_test;
Name Null Type
---- ---- ------------
ID NUMBER
COL1 VARCHAR2(10)
COL3 VARCHAR2(10)

74
Copyright @ 2013, John Jay King http://www.kingtraining.com

Invisible Column Example 2
insert into invisible_test
(col1,col2,col3) values (1,'a','a');
insert into invisible_test
(col1,col3) values (2,'b');
insert into invisible_test values (3,'c');
select * from invisible_test;
alter table invisible_test modify col2 visible;
desc invisible_test;
Name Null Type
---- ---- ------------
ID NUMBER
COL1 VARCHAR2(10)
COL3 VARCHAR2(10)
COL2 VARCHAR2(10)

75
Copyright @ 2013, John Jay King http://www.kingtraining.com

PL/SQL in WITH
•  Oracle 12c allows definition of PL/SQL

Functions and Procedures using SQL’s
Common Table Expression (WITH)
– Defining PL/SQL locally reduces context-switch

costs
– Local PL/SQL overrides stored PL/SQL with

the same name
– Local PL/SQL is not stored in the database
– Local PL/SQL is part of the same source code

as the SQL that uses it

76
Copyright @ 2013, John Jay King http://www.kingtraining.com

Example PL/SQL in WITH
with function times_42(inval number)
 return number
as
begin
 return inval * 42;
end;
select channel_id,count(*) nbr_rows,

 sum(quantity_sold) qtysold,
 sum(times_42(cust_id)) cust42

 from sh.sales
 group by channel_id
 order by channel_id
/

77
Copyright @ 2013, John Jay King http://www.kingtraining.com

Temporal Validity
•  Oracle 12c adds options to CREATE

TABLE, ALTER TABLE, and SELECT
allowing use of time dimensions in
conjunction with FLASHBACK QUERY
– Periods are defined using TIMESTAMP

columns
– CREATE/ALTER TABLE’s PERIOD clause

specifies period starting and ending times
– SELECT statements AS OF PERIOD FOR

clause allows selection of rows falling within
periods

78
Copyright @ 2013, John Jay King http://www.kingtraining.com

Temporal Validity Example
CREATE TABLE temporal_emp_test(
 employee_id NUMBER,
 last_name VARCHAR2(50),
 start_time TIMESTAMP,
 end_time TIMESTAMP,
 PERIOD FOR my_time_period (start_time, end_time));
INSERT INTO temporal_emp_test

 VALUES (1000, 'King', '01-Jan-10', '30-Jun-11');
INSERT INTO temporal_emp_test

 VALUES (1001, 'Manzo', '01-Jan-11', '30-Jun-11');
INSERT INTO temporal_emp_test

 VALUES (1002, 'Li', '01-Jan-12', null);
SELECT * from temporal_emp_test AS OF PERIOD

 FOR my_time_period TO_TIMESTAMP('01-Jun-10');
SELECT * from temporal_emp_test VERSIONS PERIOD FOR

 my_time_period BETWEEN TO_TIMESTAMP('01-Jun-10')
 AND TO_TIMESTAMP('02-Jun-10');

79
Copyright @ 2013, John Jay King http://www.kingtraining.com

Online DDL
•  Some DDL statements may be performed

ONLINE in Oracle 12c, eliminating the DML
lock from earlier releases
– DROP INDEX … ONLINE
– ALTER INDEX … UNUSABLE ONLINE
– ALTER TABLE … SET UNUSED … ONLINE …
– ALTER TABLE … DROP … ONLINE
– ALTER TABLE …

 MOVE PARTITION … ONLINE
– ALTER TABLE …

 MOVE SUBPARTITION …. ONLINE

80
Copyright @ 2013, John Jay King http://www.kingtraining.com

TRUNCATE … CASCADE
•  Oracle 12c’s TRUNCATE statement allows

the use of CASCADE to eliminate values in
tables that are referentially connected

TRUNCATE TABLE ID_TEST1 CASCADE;

81
Copyright @ 2013, John Jay King http://www.kingtraining.com

EBR Improvements
•  Time does not permit detailed EBR coverage
•  Edition-Based Redefinition made its debut in

Oracle 11g and provides an ability to
significantly reduce downtime due to
changes in PL/SQL and/or SQL

•  Oracle 12c removes some limitations
present in 11g’2 implementation of EBR:
– Materialized Views and Types may be editioned
– Virtual Columns may be used with EBR

82
Copyright @ 2013, John Jay King http://www.kingtraining.com

Wrapping it all Up

•  Oracle 11g and Oracle 12c have both added significant
new functionality to the already robust Oracle
database environment

•  Oracle 12c represents the first major architectural
change to Oracle since Version 6!

•  With the release of Oracle 12c it’s probably time for your
shop to finally move to 11g R2

•  While an emphasis is sometimes placed on the features
of Oracle that support the Data Base Administrator, this
paper shows many Developer-oriented features of great
usefulness

83
Copyright @ 2013, John Jay King http://www.kingtraining.com

84
Copyright @ 2013, John Jay King http://www.kingtraining.com

The
Venetian ���

Las Vegas,
NV 	

	

COLLABORATE 14 – IOUG
Forum	

April 6 – 10, 2014	

85
Copyright @ 2013, John Jay King http://www.kingtraining.com

86
Copyright @ 2013, John Jay King http://www.kingtraining.com

Oracle 12c and Oracle 11gR2
New Features For Developers
- Session: UGF9765

To contact the author:
John King
King Training Resources
P. O. Box 1780
Scottsdale, AZ 85252 USA
1.800.252.0652 - 1.303.798.5727
Email: john@kingtraining.com Today’s slides and examples are on the web:

http://www.kingtraining.com

Please Fill Out Session Evaluations

Thanks for your attention!

87
Copyright @ 2013, John Jay King http://www.kingtraining.com

•  End

