
1
Copyright @ 2015, John Jay King

Oracle 12c
 New Features For Developers

Presented by: John Jay King
Download this paper from:
 http://www.kingtraining.com

2
Copyright @ 2015, John Jay King

Session Objectives

•  Learn new Oracle 12c features that are
geared to developers

•  Know how existing database features have
been improved in Oracle

•  Become aware of some DBA-oriented
features that impact developers

3
Copyright @ 2015, John Jay King

Who Am I?

•  John King – Partner, King Training Resources

•  Oracle Ace Director

•  Member Oak Table Network

•  Providing training to Oracle and IT community for
over 25 years – http://www.kingtraining.com

•  “Techie” who knows Oracle, ADF, SQL, Java,
and PL/SQL pretty well (along with other topics)

•  Member of AZORA, ODTUG, IOUG, and RMOUG

4
Copyright @ 2015, John Jay King

“Recent” Releases
•  Oracle 11g R1 August 2007
•  Oracle 11g R2 September 2009
•  Oracle 12c R1 June 2013
•  Oracle 12c R1.0.2 June 2014

5
Copyright @ 2015, John Jay King

Oracle 12c – Exciting DBA Stuff
•  Oracle In-Memory Database
•  Multi-tenant Architecture:

(first architecture change to Oracle since V6 in 1988!)
– Container Database (CDB)
– Pluggable Database(s) (PDB)

•  Performance Improvements:
–  Improved optimization
– Enhanced Statistics & New Histograms
–  “Heat” maps
– Adaptive Execution Plans

•  More cool stuff (review OOW announcements…)

6
Copyright @ 2015, John Jay King

Oracle 12c New Features
•  SELECT improvements: Top-n & Pagination,

pattern matching, outer join improvements
•  Table definition improvements: expanded

columns, identity columns, default improvements,
invisible columns

•  PL/SQL in WITH clause
•  Temporal Validity
•  Online DML operations
•  Truncate CASCADE
•  EBR improvements
•  JSON in the database (12.1.0.2)

7
Copyright @ 2015, John Jay King

New SQL Developer
•  Oracle SQL Developer 4.0 is now available

for download
•  Many new features & supports Oracle 12c

(still a couple of “wrinkles” …)

8
Copyright @ 2015, John Jay King

Top-N & Pagination
•  Oracle 12c adds “top-n” type queries and

paginated queries
– FETCH FIRST/LAST nn ROWS

 FIRST/LAST n PERCENT ROWS
– OFFSET nn ROWS

•  Optimizer uses analytics under the covers
to make this work

9
Copyright @ 2015, John Jay King

Top-N: Base Query
•  Original query; note row sequence
select ename,sal from emp order by sal desc;
ENAME SAL
---------- ----------
KING 5000
FORD 3000
SCOTT 3000
JONES 2975
BLAKE 2850
CLARK 2450
ALLEN 1600
TURNER 1500
MILLER 1300
WARD 1250
*** more ***
SMITH 800

10
Copyright @ 2015, John Jay King

Top-N: Using Rownum
•  Original query uses “rownum” – note

sequence of data (oops, wrong rows…)
select ename,sal from emp
 where rownum < 5 order by sal desc;
--
ENAME SAL
---------- ----------
JONES 2975
ALLEN 1600
WARD 1250
SMITH 800

– Note: use of rownum, RANK, or
DENSE_RANK in dynamic view (select from
(subquery)) may be used to get correct rows

11
Copyright @ 2015, John Jay King

Top-N: First nn ROWS
•  Here the first five rows (by value) are

selected; note no need for analytics

select ename,sal from emp
 order by sal desc
 fetch first 5 rows only;

ENAME SAL
---------- ----------
KING 5000
SCOTT 3000
FORD 3000
JONES 2975
BLAKE 2850

12
Copyright @ 2015, John Jay King

Pagination
•  The OFFSET clause may start processing

at a given row; when (optionally) paired
with FETCH allows pagination in query

select ename,sal from emp
 order by sal desc
 offset 2 rows
 fetch first 5 rows only;

ENAME SAL
---------- ----------
FORD 3000
JONES 2975
BLAKE 2850
CLARK 2450
ALLEN 1600

13
Copyright @ 2015, John Jay King

Top-N: Percentage
•  Top-N may use a percentage rather than a

number of rows

select ename,sal from emp
 order by sal desc
 offset 2 rows
 fetch first 5 percent rows only;

ENAME SAL
---------- ----------
SCOTT 3000

14
Copyright @ 2015, John Jay King

Matching Patterns
•  Enhanced ability to use Regular

Expressions enabled by Oracle 12c’s
MATCH_RECOGNIZE

•  Using syntax similar to the MODEL clause
and Analytics; rows may be compared to
other rows using Regular Expressions
(beyond capabilities of LAG/LEAD)

15
Copyright @ 2015, John Jay King

MATCH_RECOGNIZE
•  MATCH_RECOGNIZE includes:

– PARTITION Segregate data
– ORDER BY Order with partitions
– MEASURES Define output columns
– AFTER Return single/multiple rows
– PATTERN Define regular expression
– DEFINE Specify expression tags

16
Copyright @ 2015, John Jay King

Sample MATCH_RECOGNIZE
•  The code on the following pages creates a

report illustrating sales patterns for a
specific product over time

17
Copyright @ 2015, John Jay King

Sample Code 1
•  SELECT uses query in from clause to

aggregate SH.SALES data by prod_id and
day (truncated time_id)

select * from
 (select prod_id,trunc(time_id)time_id,
 sum(amount_sold) amount_sold from sh.sales
 where prod_id = 148

 and extract(year from time_id) in (2000,2001)
 group by prod_id, trunc(time_id))

18
Copyright @ 2015, John Jay King

Sample Code 2
match_recognize (
 partition by prod_id
 order by time_id
 measures to_char(strt.time_id,'yyyy-mm-dd') as
start_date,
 to_char(last(down.time_id),'yyyy-mm-dd') as bottom_date,
 to_char(last(up.time_id) ,'yyyy-mm-dd') as end_date,
 last(round(down.amount_sold)) as bottom_amt,
 last(round(up.amount_sold)) as end_amt
 --one row per match
 after match skip to last up
 pattern (strt down+ up+)
 define
 down as down.amount_sold < prev(down.amount_sold),
 up as up.amount_sold > prev(up.amount_sold)
) matcher
order by matcher.prod_id, matcher.start_date

19
Copyright @ 2015, John Jay King

Results
•  Here are the results and a sample of the

data to see what happened
•  Two result rows:
 148 2000-01-18 2000-01-23 2000-01-27 1191 1333
 148 2000-01-27 2000-02-02 2000-02-14 887 2148

•  Matching base data rows:

 148 18-JAN-00 2229
 148 23-JAN-00 1191
 148 27-JAN-00 1333
 148 02-FEB-00 887
 148 14-FEB-00 2148

20
Copyright @ 2015, John Jay King

Outer Join Improvements
•  Oracle 12c expands the use of the

“traditional” Oracle Outer Join syntax (+) to
make it more useful

•  The (+) notation to create null rows may
now be used for multiple tables & columns

21
Copyright @ 2015, John Jay King

Outer Join Example

select region_name, country_name, department_name, city,
count(employee_id) nbr_emps
 from hr.regions r, hr.countries c, hr.locations l,

 hr.departments d, hr.employees e
 where r.region_id = c.region_id(+)
 and c.country_id = l.country_id(+)
 and l.location_id = d.location_id(+)
 and d.department_id = e.department_id(+)
 group by region_name,country_name,department_name, city
 order by region_name,country_name,department_name, city

22
Copyright @ 2015, John Jay King

CROSS & OUTER APPLY
•  Oracle 12c adds the ability to JOIN values

in a generated table collection to regular
tables using correlated column values:
– CROSS APPLY Join table to generated

 collection when values
 match

– OUTER APPLY Join table to generated
 collection when values
 match and create
 matches for non-match
 rows too

23
Copyright @ 2015, John Jay King

Example APPLY - Setup
create or replace type name_table_type

 as table of varchar2(100);
create or replace function department_employees
(in_department_id varchar2)
 return name_table_type
is
 mynames name_table_type;
begin
 select cast(collect(last_name || ', ' || first_name)

 as name_table_type)
 into mynames
 from hr.employees
 where department_id = in_department_id;
 return mynames;
end;
/

24
Copyright @ 2015, John Jay King

Example APPLY
select *
 from hr.departments d
 cross apply
 department_employees(d.department_id) dept_emps;

select *
 from hr.departments d
 outer apply
 department_employees(d.department_id) dept_emps;

select department_name
 ,department_employees(department_id) deptemps
 from hr.departments;

25
Copyright @ 2015, John Jay King

LATERAL Inline Views
•  Lateral inline views introduce a new

keyword allowing correlated references to
other tables in a join
– Correlated tables appear to the left of the inline

view in the query’s FROM list
– Correlation names may be used anywhere

within the inline view a correlation name
usually occurs
(e.g. SELECT, FROM, WHERE, …)

26
Copyright @ 2015, John Jay King

Example Lateral Inline View
•  Here is an example using a lateral inline

view; this syntax would fail without the
“LATERAL” keyword

select last_name,first_name,department_name
 from hr.employees e, LATERAL(select *

 from hr.departments d
 where e.department_id
 = d.department_id);

27
Copyright @ 2015, John Jay King

New Column Sizes
•  Oracle 12c increases the maximum size of

three data types to 32,767 (4,000 before)
– VARCHAR2
– NVARCHAR2
– RAW

•  Not default: DBA sets max_sql_string_size
EXTENDED (COMPATIBLE must be 12.0.0.0.0+)

•  Stored out of line as SECUREFILE CLOB
when > 4k

•  Now matches PL/SQL variables

28
Copyright @ 2015, John Jay King

Identity Columns
•  Oracle has had SEQUENCES for years;

the IDENTITY column allows use of a
SEQUENCE as part of a column definition
(much like some competitor databases)
– Use “GENERATED AS IDENTITY” clause
– Default starts with 1 increments by 1
– May set values using START WITH and

INCREMENT BY
–  IDENTITY column resets if table is dropped

and recreated

29
Copyright @ 2015, John Jay King

Identity Example 1
create table id_test1
(id number generated as identity,
 col1 varchar2(10));
--
insert into id_test1 (col1) values ('A');
insert into id_test1 (col1) values ('B');
insert into id_test1 (col1) values ('C');
--
select * from id_test1;
 ID COL1
---------- ----------
 1 A
 2 B
 3 C

30
Copyright @ 2015, John Jay King

Identity Example 2
create table id_test1
(id number generated as identity (

 start with 10 increment by 11),
 col1 varchar2(10));
--
insert into id_test1 (col1) values ('A');
insert into id_test1 (col1) values ('B');
insert into id_test1 (col1) values ('C');
--
select * from id_test1;
 ID COL1
---------- ----------
 10 A
 21 B
 32 C

31
Copyright @ 2015, John Jay King

Session-Specific Sequence
•  CREATE SEQUENCE now offers a

SESSION parameter causing a sequence
to be reset in each session where it is used

create sequence session_sample_seq
 start with 1 increment by 1
 session;

– Rows in Global Temporary Tables exist either
for the life of the session or transaction

– While particularly useful for GTTs; session-
specific sequences are NOT limited to GTTs

32
Copyright @ 2015, John Jay King

Enhanced Column DEFAULT
•  Oracle 12c enhances the capabilities of

column default settings
– Columns may be set to a default when NULL

values are INSERTed
– Column default values may be based upon a

SEQUENCE (.nextval or .currval)

33
Copyright @ 2015, John Jay King

Example Defaults
drop sequence default_test_seq;
drop table default_test;
create sequence default_test_seq start with 1 increment by 1;
create table default_test
(id number default default_test_seq.nextval not null,
 col1 varchar2(10) ,
 col2 varchar2(10)default on null 'N/A' not null);
insert into default_test (col1,col2) values ('A',null);
insert into default_test (col1) values ('B');
insert into default_test (col1,col2) values ('C','test');
select * from default_test;
 ID COL1 COL2
---------- ---------- ----------
 1 A N/A
 2 B N/A
 3 C test

34
Copyright @ 2015, John Jay King

Invisible Columns
•  Columns may be marked “INVISIBLE” in

CREATE/ALTER table
•  Invisible columns do not appear in

SQL*Plus DESCRIBE or SQL Developer
column display (does show in SQL
Developer table column list)

•  Invisible columns may be inserted into or
omitted from INSERT statements

•  When made visible columns appear at end
of table (why?? See next page)

35
Copyright @ 2015, John Jay King

COL$ View
•  What happens when a column is marked

invisible?
•  The database marks column number to 0

SELECT c.name,c.type#,c.col#,c.intcol#,c.segcol#,

 TO_CHAR (c.property,'XXXXXXXXXXXX') AS property
FROM sys.col$ c, sys.obj$ o, sys.user$ u
WHERE c.obj# = o.obj#
AND o.owner# = u.user#
AND u.name = ‘MYUSER’
AND o.name = ‘MYTABLE’;

–  Col# is set to 0
–  Property is set to x’40000020’

36
Copyright @ 2015, John Jay King

Invisible Column Example 1
drop table invisible_test;
create table invisible_test (
 id number,
 col1 varchar2(10),
 col2 varchar2(10) invisible,
 col3 varchar2(10));
desc invisible_test;
Name Null Type
---- ---- ------------
ID NUMBER
COL1 VARCHAR2(10)
COL3 VARCHAR2(10)

37
Copyright @ 2015, John Jay King

Invisible Column Example 2
insert into invisible_test
(col1,col2,col3) values (1,'a','a');
insert into invisible_test
(col1,col3) values (2,'b');
insert into invisible_test values (3,'c');
select * from invisible_test;
alter table invisible_test modify col2 visible;
desc invisible_test;
Name Null Type
---- ---- ------------
ID NUMBER
COL1 VARCHAR2(10)
COL3 VARCHAR2(10)
COL2 VARCHAR2(10)

38
Copyright @ 2015, John Jay King

PL/SQL in WITH
•  Oracle 12c allows definition of PL/SQL

Functions and Procedures using SQL’s
Common Table Expression (WITH)
– Defining PL/SQL locally reduces SQL-PL/SQL

context-switching costs
– Local PL/SQL overrides stored PL/SQL with

the same name
– Local PL/SQL is not stored in the database
– Local PL/SQL is part of the same source code

as the SQL that uses it
– PL/SQL Result Cache no use in Local PL/SQL

39
Copyright @ 2015, John Jay King

Example PL/SQL in WITH
with function times_42(inval number)
 return number
as
begin
 return inval * 42;
end;
select channel_id,count(*) nbr_rows,

 sum(quantity_sold) qtysold,
 sum(times_42(cust_id)) cust42

 from sh.sales
 group by channel_id
 order by channel_id
/

40
Copyright @ 2015, John Jay King

PL/SQL UDF
•  Oracle 12c allows functions to be defined

using “PRAGMA UDF” to specify that a
function will be used in SELECTS
(behaving similar to function in WITH)

•  This optimizes code for use within a
SELECT or other SQL

Probably not a good option for
functions also used from PL/SQL !

41
Copyright @ 2015, John Jay King

Example PL/SQL UDF
create or replace function times_42(inval number)
 return number
as
 pragma udf;
begin
 return inval * 42;
end;
/

42
Copyright @ 2015, John Jay King

Temporal Validity
•  Oracle 12c adds options to CREATE

TABLE, ALTER TABLE, and SELECT
allowing use of time dimensions in
conjunction with FLASHBACK QUERY
– Periods are defined using TIMESTAMP

columns
– CREATE/ALTER TABLE’s PERIOD clause

specifies period starting and ending times
– SELECT statements AS OF PERIOD FOR

clause allows selection of rows falling within
periods

43
Copyright @ 2015, John Jay King

Temporal Validity Example
CREATE TABLE temporal_emp_test(
 employee_id NUMBER,
 last_name VARCHAR2(50),
 start_time TIMESTAMP,
 end_time TIMESTAMP,
 PERIOD FOR my_time_period (start_time, end_time));
INSERT INTO temporal_emp_test

 VALUES (1000, 'King', '01-Jan-10', '30-Jun-11');
INSERT INTO temporal_emp_test

 VALUES (1001, 'Manzo', '01-Jan-11', '30-Jun-11');
INSERT INTO temporal_emp_test

 VALUES (1002, 'Li', '01-Jan-12', null);
SELECT * from temporal_emp_test AS OF PERIOD

 FOR my_time_period TO_TIMESTAMP('01-Jun-10');
SELECT * from temporal_emp_test VERSIONS PERIOD FOR

 my_time_period BETWEEN TO_TIMESTAMP('01-Jun-10')
 AND TO_TIMESTAMP('02-Jun-10');

44
Copyright @ 2015, John Jay King

Online DDL
•  Some DDL statements may be performed

ONLINE in Oracle 12c, eliminating the DML
lock from earlier releases
– DROP INDEX … ONLINE
– ALTER INDEX … UNUSABLE ONLINE
– ALTER TABLE … SET UNUSED … ONLINE …
– ALTER TABLE … DROP … ONLINE
– ALTER TABLE …

 MOVE PARTITION … ONLINE
– ALTER TABLE …

 MOVE SUBPARTITION …. ONLINE

45
Copyright @ 2015, John Jay King

TRUNCATE … CASCADE
•  Oracle 12c’s TRUNCATE statement allows

the use of CASCADE to eliminate values in
tables that are referentially connected

TRUNCATE TABLE ID_TEST1 CASCADE;

– Child table referential security
must specify “ON DELETE CASCADE”
or statement will fail

46
Copyright @ 2015, John Jay King

UTL_CALL_STACK
•  Oracle has provided PL/SQL debug aids

for a long time; perhaps your shop uses
one: dbms_utility.format_call_stack,
dbms_utility.format_error_backtrace, or
dbms_utility.format_error_stack

•  Oracle 12c adds UTL_CALL_STACK
providing greater insight into the stack

47
Copyright @ 2015, John Jay King

UTL_CALL_STACK Functions
•  See documentation for a complete list of

subprograms – here are a few:
– CONCATENATE_SUBPROGRAM

Concatenated unit name
– DYNAMIC_DEPTH

Number of subprograms on call stack
– LEXICAL_DEPTH

Lexical nesting level of subprogram

– UNIT_LINE
Line number in backtrace unit

48
Copyright @ 2015, John Jay King

Using UTL_CALL_STACK
create or replace procedure Print_Call_Stack
As
 DEPTH pls_integer := UTL_CALL_STACK.dynamic_depth();
 procedure printheaders is
 /* more code */
 procedure print is
 begin
 printheaders;
 for stunit in reverse 1..DEPTH loop
 dbms_output.put_line(
 rpad(UTL_CALL_STACK.lexical_depth(stunit), 10)
 || rpad(stunit, 7)
 || rpad(to_char(UTL_CALL_STACK.unit_line(stunit),
 '99'), 9)
 || UTL_CALL_STACK.concatenate_subprogram
 end loop;
 /* more code */

49
Copyright @ 2015, John Jay King

Anatomy of Test Package
•  The example package illustrates code

nested within code:
package body TestPkg is

procedure proc_a is
procedure proc_b is

 procedure proc_c is
 procedure proc_d is

 Print_Call_Stack();

50
Copyright @ 2015, John Jay King

UTL_CALL_STACK Results
begin TestPkg.proc_a; end;
Error report -
ORA-06501: PL/SQL: program error
ORA-06512: at "JOHN.TESTPKG", line 11
ORA-06512: at "JOHN.TESTPKG", line 14
ORA-06512: at "JOHN.TESTPKG", line 17
ORA-06512: at "JOHN.TESTPKG", line 20
ORA-06512: at line 1
06501. 00000 - "PL/SQL: program error"
*Cause: This is an internal error message. An error has
been detected in a PL/SQL program.
*Action: Contact Oracle Support Services

TESTPKG.PROC_A
TESTPKG.PROC_A.PROC_B
TESTPKG.PROC_A.PROC_B.PROC_C
TESTPKG.PROC_A.PROC_B.PROC_C.PROC_D
PRINT_CALL_STACK
PRINT_CALL_STACK.PRINT

51
Copyright @ 2015, John Jay King

12c (12.1.0.2) and JSON
•  12c patch-set 2 (12.1.0.2) adds JSON data
•  JSON documents are stored as

VARCHAR2, CLOB, or BLOB data type
•  JSON data works with all existing Oracle

features including SQL and Analytics
•  12c supports path-based queries of JSON

data stored in the database, JSON Path
Language, and JSON Path Expressions

•  JSON is used in SQL via SQL/JSON views
•  JSON documents may be indexed

52
Copyright @ 2015, John Jay King

JSON-XML Similarities
•  JSON is text only, just like XML and thus is

an excellent vehicle for data interchange–
JSON and XML are both plain text

•  JSON and XML are “human readable” and
"self-describing”

•  JSON and XML are hierarchical (data sets
nested within data sets)

•  JSON and XML offer validation capability;
XML’s is more mature and capable today

53
Copyright @ 2015, John Jay King

JSON-XML Dissimilarities
•  XML is verbose, JSON is shorter
•  JSON does not end tags, required in XML
•  JSON is quicker to read and write
•  Reading XML documents requires “walking

the DOM” – JSON does not
•  JSON works more easily and is faster than

XML when working with AJAX
•  XML documents must be tested for “well-

formed”-ness before processing

54
Copyright @ 2015, John Jay King

XML File
<?xml version="1.0"?>
<myBooks>
 <book>
 <name>Learning XML</name>
 <author>Eric T. Ray</author>
 <publisher>O'Reilly</publisher>
 </book>
 <book>
 <name>XML Bible</name>
 <author>Elliotte Rusty Harold</author>
 <publisher>IDG Books</publisher>
 </book>
 <book>
 <name>XML by Example</name>
 <author>Sean McGrath</author>
 </book>
</myBooks>

55
Copyright @ 2015, John Jay King

JSON File
{"myBooks":
 [{
 "name":"Learning XML",
 "author":"Eric T. Ray",
 "publisher":"O'Reilly"
 },
 {
 "name":"XML Bible",
 "author":"Elliotte Rusty Harold",
 "publisher":"IDG Books"
 },
 {
 "name":"XML by Example",
 "author":"Sean McGrath",
 "publisher":"Prentice-Hall"
 }
]}

56
Copyright @ 2015, John Jay King

Oracle as JSON Data Store
•  JSON documents are stored in the

database using existing data types
– VARCHAR2, CLOB and BLOB for character

mode JSON
– External JSON data sources accessible

through external tables
– JSON in file system (also HDFS) can be

accessed via external tables

57
Copyright @ 2015, John Jay King

JSON SQL
•  JSON content is accessible from SQL via

new operators
– JSON_VALUE Used to query a scalar value

from a JSON document
– JSON_TABLE Used to query JSON document

and create relational-style columns
– JSON_EXISTS Used in query to see if JSON

path exists in document IS JSON Used to
validate JSON, usually in CHECK constraint

•  JSON operators use JSON Path language
to navigate JSON objects

58
Copyright @ 2015, John Jay King

JSON Check Constraint
create table deptj
(id raw(16) not null,
 dept_info clob constraint deptjson
 check (dept_info is json)
);

59
Copyright @ 2015, John Jay King

JSON and DML
insert into deptj values
(sys_guid(),
 '{"departments":{
 "DEPTNO": 10, "DNAME": "ACCOUNTING", "LOC": "NEW YORK",
 "deptemps": [
 { "EMPNO": 7782,
 "ENAME": "CLARK",
 "JOB": "MANAGER",
 "MGR": 7839,
 "HIREDATE": "09-JUN-81",
 "pay":{
 "SAL": 2450,
 "COMM": null},
 "DEPTNO": "10"
 },
 /* more */

60
Copyright @ 2015, John Jay King

Simple JSON Query
select dept_info
from deptj;

DEPT_INFO

{"departments":{
 "DEPTNO": 10,
 "DNAME": "ACCOUNTING",
 "LOC": "NEW YORK",
 "deptemps": [
 {
 "EMPNO": 7782,
 "ENAME": "CLARK",
 **** more ****

61
Copyright @ 2015, John Jay King

Query with JSON_VALUE
select json_value(dept_info, '$.departments.DNAME')
from deptj;
DNAME

ACCOUNTING
RESEARCH
SALES
OPERATIONS

62
Copyright @ 2015, John Jay King

Query with JSON_TABLE
select dname,ename,job,sal
from deptj, json_table(dept_info,'$.departments'
 columns (dname varchar2(15) path '$.DNAME'
 ,nested path '$.deptemps[*]'
 columns (ename varchar2(20) path '$.ENAME'
 ,job varchar2(20) path '$.JOB'
 ,nested path '$.pay'
 columns (sal number path '$.SAL')
)
));
DNAME ENAME JOB SAL
------------ ------- -------- ----------
ACCOUNTING CLARK MANAGER 2450
ACCOUNTING KING PRESIDENT 5000
**** more ****

63
Copyright @ 2015, John Jay King

EBR Improvements
•  Time does not permit detailed EBR coverage
•  Edition-Based Redefinition made its debut in

Oracle 11g and provides an ability to
significantly reduce downtime due to
changes in PL/SQL and/or SQL

•  Oracle 12c removes some limitations
present in 11gR2 implementation of EBR:
– Public Synonyms may point to editioned objects
– Materialized Views, Types, and Virtual Columns

may reference editioned objects

64
Copyright @ 2015, John Jay King

EBR & Materialized Views
•  CREATE/ALTER MATERIALIZED VIEW

now add the ability to specify use with
editioning:
– UNUSABLE BEFORE

•  CURRENT EDITION
•  EDITION XXX

– UNUSABLE BEGINNING
•  CURRENT EDITION
•  EDITION XXX
•  NULL EDITION

65
Copyright @ 2015, John Jay King

EBR & Types
•  CREATE/ALTER TYPE now add the ability

to specify use with editioning:
– UNUSABLE BEFORE

•  CURRENT EDITION
•  EDITION XXX

– UNUSABLE BEGINNING
•  CURRENT EDITION
•  EDITION XXX
•  NULL EDITION

66
Copyright @ 2015, John Jay King

EBR & Virtual Columns
•  Non-editioned Virtual Columns may

depend upon editioned objects
– May specify expression is to be resolved by

searching the specified edition:
•  CURRENT EDITION
•  EDITION XXX
•  NULL EDITION

– May use UNUSABLE EDITION or UNUSABLE
BEGINNING clause (see previous page) to
limit Virtual Columns “visibility” into editions

67
Copyright @ 2015, John Jay King

Wrapping it all Up

•  Oracle 12c has added significant new functionality to
the already robust Oracle database environment;
release 12.1.0.2 adds even more

•  Oracle 12c represents the first major architectural
change to Oracle since Version 6

•  With the release of Oracle 12c it’s probably time for your
shop to finally move to 11g R2

•  While an emphasis is sometimes placed on the features
of Oracle that support the Data Base Administrator, this
paper shows many Developer-oriented features of great
usefulness

•  I am still actively testing the new features presented
here (and some others); your mileage may vary; watch
for future editions of this talk or blog posts for more

68
Copyright @ 2015, John Jay King

RMOUG Training Days 2016
February 9-11, 2016
(Tuesday-Thursday)

Denver Convention Center

R

69
Copyright @ 2015, John Jay King

Mandalay Bay ���
Las Vegas, NV

COLLABORATE 16 – IOUG
Forum

April 10 – 14, 2016

70
Copyright @ 2015, John Jay King

71
Copyright @ 2015, John Jay King

Paper 785:
Oracle 12c
New Features For Developers

To contact the author:
John King
King Training Resources
P. O. Box 1780
Scottsdale, AZ 85252 USA
1.800.252.0652 - 1.303.798.5727
Email: john@kingtraining.com

Today’s slides and examples are on the web:
http://www.kingtraining.com

Please Complete Session Evaluations

Thanks for your attention!

72
Copyright @ 2015, John Jay King

•  End

