
1
Copyright @ 2015, John Jay King

Gauging ADF Application Performance:
 Instrumenting Your Code

Presented by: John Jay King
Download this paper from:
 http://www.kingtraining.com

2
Copyright @ 2015, John Jay King

Session Objectives

•  Learn how Oracle and Oracle WebLogic
server support tuning instrumentation

•  Be able to instrument ADF to track
performance

•  Use performance tracking data to improve
ADF application performance

3
Copyright @ 2015, John Jay King

Who Am I?

•  John King – Partner, King Training Resources

•  Oracle Ace Director

•  Member Oak Table Network

•  Providing training to Oracle and IT community for
over 25 years – http://www.kingtraining.com

•  “Techie” who knows Oracle, ADF, SQL, Java,
and PL/SQL pretty well (along with other topics)

•  Member of AZORA, ODTUG, IOUG, and RMOUG

4
Copyright @ 2015, John Jay King

Planes Have Instruments: Why?
•  Most of us have been aircraft passengers

(probably recently)
– Aren’t you glad the plane’s crew had

instruments to monitor things?
– Would you trade the cost/complexity of the

instruments for the loss of information?

5
Copyright @ 2015, John Jay King

Code Instrumentation
•  Instrumentation is the thoughtful act of

creating code that allows monitoring and
measurement of execution to facilitate
debugging and performance improvement

•  Instrumentation provides:
– Meaningful information about what, where, and

why something is happening
– Timing information in useful increments
– Logs are a key tool used to provide

instrumentation output

6
Copyright @ 2015, John Jay King

Instrumentation Advocates
•  Two (among many) Oracle performance

experts who advocate instrumentation:
– Cary Millsap

https://method-r/fogbuz.com/default.asp?W265
– Tom Kyte

http://tkyte.blogspot.com/2005/06/
instrumentation.html

7
Copyright @ 2015, John Jay King

Tracking
•  How do you know if your application is

running properly?
– Correctness of input/output processing
– Execution speed within user targets

•  When is the cost too high?
– Tracking everything all the time provides

mountains of not-very-useful data and can
impede normal execution

– Maybe; tracking should be “switchable” to be
enabled when needed and disabled when not

8
Copyright @ 2015, John Jay King

Tuning
•  What is acceptable performance? Have

your users provided reachable targets?
•  If something “takes too long” – it’s

important to know where time is spent
•  Instrumentation must provide meaningful

information about when processes begin,
when they end, and how long the activities
being performed last

•  Once problem areas are highlighted
specific issues may be addressed

9
Copyright @ 2015, John Jay King

Instrumentation Strategies
•  You need a strategy

– Too little instrumentation; can’t use it
– Too much instrumentation; masses of data that

are hard to use
– How will instrumentation take place?

•  Home-grown?
•  Using Oracle built-in facilities?
•  Using vendor-provided facilities?
•  some combination of the above?

10
Copyright @ 2015, John Jay King

Say “No” to System.out.println
•  Many Java developers use console output

via System.out.println for rudimentary
instrumentation during testing
– Production system consoles are often

unmonitored
– Production system consoles (today) are often

part of a virtualized server; never to be seen…
•  Instrumentation needs to survive the ups

and downs of the JVM and be broadly
available; logging provides many options

11
Copyright @ 2015, John Jay King

Logging
•  You shouldn’t use online debug in production
•  Traditionally, IT uses logging as a preferred

method for collecting information about
application effectiveness and efficiency

•  ADF exists in the Java world where several
logging tools are available including:
– Java SE java.util.logging
– Log4J
– Apache Commons Logging
– ADFLogger built into ADF

12
Copyright @ 2015, John Jay King

Planning for Logs
•  Where will logs go? (console/XML/text/etc.)
•  What level of Detail/Content?

– Name of package & name of module
– Name of method/procedure/function
– Variable and parameter values in use at time
– Applicable error messages/codes

(Messages and/or codes?)
– Date and time
– Who will consume the log? Is translation

needed? (user/admin/dba/support)

13
Copyright @ 2015, John Jay King

ADFLogger
•  Oracle’s ADF team recognized the need for

instrumentation and provided “ADFLogger”
•  ADFLogger provides a log mechanism fully

integrated with ADF via java.util.logging
“under the covers” with added functionality

•  ADFLogger works effectively both within
JDeveloper and from Enterprise Manager

•  ADFLogger may be switched on and off
without restart

14
Copyright @ 2015, John Jay King

ADFLogger Levels
•  Like most logging tools; ADFLogger divides

log entries into several classifications:
– SEVERE (fewest log entries)
– WARNING
–  INFO
– CONFIG
– FINE
– FINER
– FINEST (most log entries)

15
Copyright @ 2015, John Jay King

Useful ADFLogger Methods
•  ADFLogger provides some methods of its

own in addition to those inherited from
java.util.logging; including:
– begin()
– end()
–  log()
– severe(), warning(), info(), config(),

fine(), finer(), finest()

16
Copyright @ 2015, John Jay King

ADFLogger Complexity
•  Several ADFLogger methods and

constructors require HashMap input
parameters

•  It is probably simplest to create a utility
method, interface and/or superclass class
for your team rather than having everyone
build basic logging logic themselves

17
Copyright @ 2015, John Jay King

ADF & WebLogic
•  ADF is fully integrated into WebLogic;

including ADFLogger and its tooling
– A “logging.xml” file describe ADFLoggers, their

default level, and the handlers used for them
– JDeveloper has dialog-based configuration via

“Oracle Diagnostics Logging Configuration”
– JDeveloper also has “Oracle Diagnostic Log

Analyzer” tool to review log output
– Production support via Enterprise Manager

(farm->WebLogicDomain->appcluster->YOURSERVER->logs)

18
Copyright @ 2015, John Jay King

JDeveloper Logging: 1
•  First open Window->Application Servers if

it is not already open
(11g: View-> Application Server Navigator)

19
Copyright @ 2015, John Jay King

JDeveloper Logging, 2
•  Next use IntegratedWebLogicServer’s

context menu (right-click) and choose
“Configure Oracle Diagnostics Logging”

20
Copyright @ 2015, John Jay King

JDeveloper Logging, 3
•  ADFLogger is configured with “logging.xml”

file; click the “source” tab to manipulate the
XML or use the panel displayed (preferred)

21
Copyright @ 2015, John Jay King

Add Custom Logger, 1
•  To add your own logger click the green

“plus sign” icon and choose whether to
create a persistent or transient logger

– Persistent logger Stays after WebLogic

 shutdown
– Transient logger Available until

 WebLogic shutdown

22
Copyright @ 2015, John Jay King

Add Custom Logger, 2
•  Name the logger; if you enter a Java class

name the class name and its package
name will be used to identify log entries

23
Copyright @ 2015, John Jay King

Add Custom Logger, 3
•  You may also use a textual name; take

time to plan what serves you best
•  Choose the default level for messages

associated with this logger

24
Copyright @ 2015, John Jay King

Adding Custom Logger, 4
•  Custom logger(s) show in the configuration

dialog with the Oracle-provided loggers

25
Copyright @ 2015, John Jay King

Enable Built-In Loggers
•  Oracle has instrumented just about

everything; probably too many choices
•  A good base set is oracle.adf,

oracle.adfinternal, and oracle.jbo (set level)

26
Copyright @ 2015, John Jay King

Step No Longer Needed?
•  When using the built-in configuration tool; a

runtime setting is automatically set; in
earlier versions of ADF this required a
restart of WebLogic (sometime still useful)

27
Copyright @ 2015, John Jay King

Built-In Log Analyzer, 1
•  Use the “Tools” menu and select the

“Oracle Diagnostic Log Analyzer” to open

28
Copyright @ 2015, John Jay King

Built-In Log Analyzer, 2
•  Choose which loggers and levels to view:

29
Copyright @ 2015, John Jay King

Using Tracking Data, 1
•  Select “By ADF Request” for details, times,

and percentages

30
Copyright @ 2015, John Jay King

Using Tracking Data, 2
•  Select “By Log Message” to see very

detailed specifics

31
Copyright @ 2015, John Jay King

Using Tracking Data, 3

32
Copyright @ 2015, John Jay King

Save Logs to File
•  Use JDeveloper’s preferences to save logs

to a file in text form (probably increase
maximum log lines, default is 300)
JDeveloper->Preferences->Environment->Log
(11g: Tools->Preferences->Environment->Log)

33
Copyright @ 2015, John Jay King

Log File Output
•  ADF generates a text file that looks like:

34
Copyright @ 2015, John Jay King

SQL Statement Log
•  Default oracle.jbo logging shows SQL

35
Copyright @ 2015, John Jay King

Custom Logging
•  Here is some code added to view object

implementation class when salary changes

 private static ADFLogger myLogger =
 ADFLogger.createADFLogger(EmpImpl.class);

 public void setSal(BigDecimal value) {
 myLogger.info("Salary for employee "

 + this.getEmpno().toString()
 + " changed to "

 + value.toString());
 setAttributeInternal(SAL, value);
 }

36
Copyright @ 2015, John Jay King

Enable Custom Logging
•  Use Oracle Diagnostics Logging Config.

37
Copyright @ 2015, John Jay King

Custom Logging Output

38
Copyright @ 2015, John Jay King

Related Output
•  Use drop-down to select related output

39
Copyright @ 2015, John Jay King

Custom Timing Entries
•  When the built-in instrumentation isn’t what

you need; you can add timing yourself

40
Copyright @ 2015, John Jay King

Custom Timing, 2
•  Checking if Logging enabled

 public void executeQuery() {
 Long startMillis = System.currentTimeMillis();
 Long endMillis = 0L;
 Long elapsedMillis = 0L;
 super.executeQuery();
 if (myLogger.isLoggable(Level.INFO)) {
 endMillis = System.currentTimeMillis();
 elapsedMillis = endMillis - startMillis;
 myLogger.log("SQL execution ”+ elapsedMillis);
 }
 }

41
Copyright @ 2015, John Jay King

Enterprise Manager Support
•  When executing in production environments;

Enterprise Manager provides the ability to
view WebLogic’s logging data:
1.  Open the server farm
2.  Select WebLogicDomain
3.  Select appcluster
4.  Choose the desired WebLogic server
5.  Select logs to see options to turn logging

on/off or to view logs

42
Copyright @ 2015, John Jay King

Use | Make | Buy
•  Instrumentation is easy, we have 3 choices:

– Use Oracle’s built-in logging is vast and
 provides great detail

– Make Use ADFLogger to “grow your own”
(use superclasses to make it reusable)

– Buy Frank Houweling from Amis has created
 an ADF Performance Monitor Tool
 (I have not tested it thoroughly; but it
 seems to work well)
 More information is available at:

http://www.amis.nl/ADFperformancemonitor

43
Copyright @ 2015, John Jay King

Wrapping it all Up

•  Instrumentation is the key to debugging,
tracking, and tuning ADF applications

•  ADFLogger provides comprehensive
logging ability “out of the box”

•  JDeveloper provides GUI-based support for
ADFLogger configuration and use

•  Occasionally, it will be useful to create a
“home-grown” ADFLogger; but, the built-in
tools will work with that too

44
Copyright @ 2015, John Jay King

RMOUG Training Days 2016
February 9-11, 2016
(Tuesday-Thursday)

Denver Convention Center

R

45
Copyright @ 2015, John Jay King

Mandalay Bay ���
Las Vegas, NV

COLLABORATE 16 – IOUG
Forum

April 10 – 14, 2016

46
Copyright @ 2015, John Jay King

47
Copyright @ 2015, John Jay King

Session 779
Gauging ADF Application Performance:

 Instrumenting Your Code

To contact the author:
John King
King Training Resources
P. O. Box 1780
Scottsdale, AZ 85252 USA
1.800.252.0652 - 1.303.798.5727
Email: john@kingtraining.com

Today’s slides are on the web:
http://www.kingtraining.com

Please Complete Session Evaluations

Thanks for your attention!

48
Copyright @ 2015, John Jay King

•  End

