
Implementing Data Warehouses and Business Intelligence

Copyright © 2001, John Jay King 1 Paper # 440

AANNAALLYYZZEE TTHHIISS!! UUSSIINNGG OORRAACCLLEE88II AANNAALLYYTTIICC FFUUNNCCTTIIOONNSS

John Jay King, King Training Resources

ABSTRACT
Oracle 8.1.6 introduced new Analytic functions allowing complex statistical calculations to be accomplished more easily.
Analytic functions provide performance benefits over the code previously required to accomplish the same tasks. New
analytic function families include: lag/lead to compare values of rows in the same table, ranking to support "top n" queries,
reporting to compare aggregates to non-aggregates, windowing to allow moving average types of queries, and statistics to
extend the current power of aggregation. Analytic functions allow division of results into ordered groups using the over clause
and its subordinate query partition clause, windowing clause, and order by clause.

INTRODUCTION
Oracle8i Release 2 (8.1.6) introduced several new features intended to enrich Oracle's ability to support decision making and
statistical analysis including CUBE and ROLLUP extensions to GROUP BY as well as Analytic functions (the subject of this
paper).
Oracle8i provides CUBE and ROLLUP to extend the ability of GROUP BY to include some of the following features.
ROLLUP builds subtotal aggregates at every level requested, including grand total. CUBE extends ROLLUP to calculate all
possible combinations of subtotals for a specific GROUP BY. Data for cross-tabulation reports is created easily using CUBE.
CUBE and ROLLUP are not discussed further in this paper except where they impact use of Analytic functions.
Analytic functions lend statistical muscle to SQL that has in the past called for joins, unions, and complex programming.
Performance is improved (sometimes significantly) because the functions are performing work that previously required self-
joins and unions. Using Analytic functions requires far less SQL coding than previously required to accomplish the same task
because one SQL statement takes the place of many.
Analytic functions are categorized into five groups: Ranking, Windowing, Reporting, Lag/Lead, and Statistics. The first four
are sometimes referred to as "Analytic Families" in Oracle literature. Statistics provide sophisticated aggregation capabilities.
Analytic functions are not intended to replace OLAP environments, rather, they may be used by OLAP products like Oracle's
Express to improve query speed.
Together, the performance and readability of Analytic functions compared to what has been used make a compelling
argument to move to the new techniques.

IMPORTANT CONCEPTS
Using Analytic functions adds a new stage to the processing of a query: First all joining, WHERE clause, GROUP BY, and
HAVING clause activity selects desired rows; Next, the Analytic functions and any partitioning they require take place;
Finally, SELECT DISTINCT and ORDER BY processing occurs for the query.
Query result sets are divided into ordered groups called Partitions (unrelated to database table partitioning). Partitioning (like
all analytic functions) takes place after GROUP BY. Result sets may be divided into as many partitions as makes sense for the
values being derived. Partitioning may be performed using expressions or column values. Each result set may represent a
single Partition, a few larger Partitions, or many small Partitions.
Each Partition may be represented by a sliding Window defining the range of rows used for calculations on the Current Row
(defined in the next paragraph). Windows may be defined representing a number of physical rows or some logical interval (e.g.
time). Each Window has a starting row and an ending row and may slide on either end or at both ends. For example a
cumulative sum's Window would be the (unmoving) first and last records of the partition. Or, a moving average would slide at
both ends so that the averaging made sense. Windows may represent 1 or more rows in a partition (or the entire partition).

Implementing Data Warehouses and Business Intelligence

Copyright © 2001, John Jay King 2 Paper # 440

Each analytic function is based upon a current row within a Window (defined by OVER (ORDER BY) clause). That is, each
calculation returns values that involve the rows included in the current Window. Current Row is the reference point setting
the start and end of a window. For example a moving average defines a window that begins some number of rows before the
current row, the current row, and some number of rows after the current row.
The Current Row is inside a Window, a Window is inside a Partition, and a Partition is inside of the Result Set.

OVERVIEW OF ANALYTIC FAMILIES
The various sets of Analytic "Families" each provide functions that solve a particular group of problems. Ranking functions
allow values that represent some internal ordering of data such as "top 5 products sold by country" or "find the top three
salespersons in each city" requiring that all rows be processed before performing the function. Windowing allows moving and
cumulative capability to answer questions like "show a moving average for the last 3 months of sales by department" or "show
a cumulative sum of sales by country." Reporting functions allow the comparison of aggregates to non-aggregates such as
"percent of total department salaries represented by each employee." Lag/Lead compares values in different rows of the same
table without having to code self-joins. Statistics provide a new set of group-level or aggregate data. Unlike the original
aggregate functions, Statistics functions generally require two parameters.

RANKING
Ranking functions include: RANK, DENSE_RANK, CUME_DIST, PERCENT_RANK , NTILE, and ROW_NUMBER
RANK produces a ranking within a given set of rows using the OVER clause ORDER BY to define the sort sequence of the
group. In the event of two values being equal the ranking skips as appropriate (e.g. 10->12 below).

1 select empno

2 ,ename

3 ,hiredate

4 ,rank() over (order by hiredate) rank

5 from emp

6* order by hiredate,ename

EMPNO ENAME HIREDATE RANK

---------- ---------- --------- ----------

7369 SMITH 17-DEC-80 1

7499 ALLEN 20-FEB-81 2

7521 WARD 22-FEB-81 3

7566 JONES 02-APR-81 4

7698 BLAKE 01-MAY-81 5

7782 CLARK 09-JUN-81 6

7844 TURNER 08-SEP-81 7

7654 MARTIN 28-SEP-81 8

7839 KING 17-NOV-81 9

7902 FORD 03-DEC-81 10

7900 JAMES 03-DEC-81 10

7934 MILLER 23-JAN-82 12

7788 SCOTT 09-DEC-82 13

7876 ADAMS 12-JAN-83 14

Implementing Data Warehouses and Business Intelligence

Copyright © 2001, John Jay King 3 Paper # 440

Rank may also be used with GROUP aggregation:

1 select dname,

2 nvl(avg(sal),0) avg_sal,

3 count(empno) nbr_emps,

4 rank() over (order by nvl(avg(sal),0)) rank

5 from emp,dept

6 where dept.deptno = emp.deptno(+)

7* group by dname

DNAME AVG_SAL NBR_EMPS RANK

-------------- ---------- ---------- ----------

OPERATIONS 0 0 1

SALES 1566.66667 6 2

RESEARCH 2175 5 3

ACCOUNTING 2916.66667 3 4

DENSE_RANK also produces a ranking within a given set of rows using the OVER clause ORDER BY to define the sort
sequence of the group. However, in the event of two values being equal the ranking does not skip.

1 select empno

2 ,ename

3 ,hiredate

4 ,dense_rank() over (order by hiredate) rank

5 from emp

6* order by hiredate,ename

EMPNO ENAME HIREDATE RANK

---------- ---------- --------- ----------

7369 SMITH 17-DEC-80 1

7499 ALLEN 20-FEB-81 2

7521 WARD 22-FEB-81 3

7566 JONES 02-APR-81 4

7698 BLAKE 01-MAY-81 5

7782 CLARK 09-JUN-81 6

7844 TURNER 08-SEP-81 7

7654 MARTIN 28-SEP-81 8

7839 KING 17-NOV-81 9

7902 FORD 03-DEC-81 10

7900 JAMES 03-DEC-81 10

7934 MILLER 23-JAN-82 11

7788 SCOTT 09-DEC-82 12

7876 ADAMS 12-JAN-83 13

Implementing Data Warehouses and Business Intelligence

Copyright © 2001, John Jay King 4 Paper # 440

Partitioning defines where the rank is reset.

1 select empno

2 ,ename

3 ,hiredate

4 ,deptno

5 ,rank() over (partition by deptno order by hiredate) rank

6 from emp

7* order by hiredate,ename

EMPNO ENAME HIREDATE DEPTNO RANK

---------- ---------- --------- ---------- ----------

7369 SMITH 17-DEC-80 20 1

7499 ALLEN 20-FEB-81 30 1

7521 WARD 22-FEB-81 30 2

7566 JONES 02-APR-81 20 2

7698 BLAKE 01-MAY-81 30 3

7782 CLARK 09-JUN-81 10 1

7844 TURNER 08-SEP-81 30 4

7654 MARTIN 28-SEP-81 30 5

7839 KING 17-NOV-81 10 2

7902 FORD 03-DEC-81 20 3

7900 JAMES 03-DEC-81 30 6

7934 MILLER 23-JAN-82 10 3

7788 SCOTT 09-DEC-82 20 4

7876 ADAMS 12-JAN-83 20 5

Partitioning also works with aggregates.

1 select dname,

2 job,

3 nvl(avg(sal),0) avg_sal,

4 count(empno) nbr_emps,

5 rank() over (partition by dname order by nvl(avg(sal),0)) rank

6 from emp,dept

7 where dept.deptno = emp.deptno(+)

8* group by dname, job

DNAME JOB AVG_SAL NBR_EMPS RANK

-------------- --------- ---------- ---------- ----------

ACCOUNTING CLERK 1300 1 1

ACCOUNTING MANAGER 2450 1 2

ACCOUNTING PRESIDENT 5000 1 3

Implementing Data Warehouses and Business Intelligence

Copyright © 2001, John Jay King 5 Paper # 440

OPERATIONS 0 0 1

RESEARCH CLERK 950 2 1

RESEARCH MANAGER 2975 1 2

RESEARCH ANALYST 3000 2 3

SALES CLERK 950 1 1

SALES SALESMAN 1400 4 2

SALES MANAGER 2850 1 3

Rank also might include rows created by CUBE or ROLLUP.

1 select deptno Department

2 ,decode(grouping(job),1,'All Employee

3 ,sum(sal) "Total SAL"

4 ,rank() over (order by sum(sal)) rank

5 from emp

6* group by rollup (deptno,job)

DEPARTMENT JOB Total SAL RANK

---------- ------------- ---------- ----------

30 CLERK 950 1

10 CLERK 1300 2

20 CLERK 1900 3

10 MANAGER 2450 4

30 MANAGER 2850 5

20 MANAGER 2975 6

10 PRESIDENT 5000 7

30 SALESMAN 5600 8

20 ANALYST 6000 9

10 All Employees 8750 10

30 All Employees 9400 11

20 All Employees 10875 12

All Employees 29025 13

The GROUPING() function provided with ROLLUP and CUBE may also be used.

1 select deptno Department

2 ,decode(grouping(job),1,'All Employees',job) job

3 ,sum(sal) "Total SAL"

4 ,rank() over (partition by grouping(job) order by sum(sal)) rank

5 from emp

6* group by rollup (deptno,job)

Implementing Data Warehouses and Business Intelligence

Copyright © 2001, John Jay King 6 Paper # 440

DEPARTMENT JOB Total SAL RANK

---------- ------------- ---------- ----------

30 CLERK 950 1

10 CLERK 1300 2

20 CLERK 1900 3

10 MANAGER 2450 4

30 MANAGER 2850 5

20 MANAGER 2975 6

10 PRESIDENT 5000 7

30 SALESMAN 5600 8

20 ANALYST 6000 9

10 All Employees 8750 1

30 All Employees 9400 2

20 All Employees 10875 3

All Employees 29025 4

"Top N" queries may be solved easily by using RANK or DENSE_RANK in dynamic view (query in FROM clause).

1 select dynemp.ename

2 ,dynemp.job

3 ,dynemp.sal

4 ,dynemp.rank

5 from (select ename

6 ,sal

7 ,job

8 ,dense_rank() over (partition by job order by sal desc) rank

9 from emp) dynemp

10 where dynemp.rank < 3

11 order by dynemp.job

12* ,dynemp.rank

ENAME JOB SAL RANK

---------- --------- ---------- ----------

SCOTT ANALYST 3000 1

FORD ANALYST 3000 1

MILLER CLERK 1300 1

ADAMS CLERK 1100 2

JONES MANAGER 2975 1

BLAKE MANAGER 2850 2

KING PRESIDENT 5000 1

ALLEN SALESMAN 1600 1

TURNER SALESMAN 1500 2

Implementing Data Warehouses and Business Intelligence

Copyright © 2001, John Jay King 7 Paper # 440

NULLs are treated like normal values and for ranking are treated as equal to other NULLs. The ORDER BY clause may
specify NULLS FIRST or NULLS LAST. If unspecified NULLS are treated as larger than any other value and appear
depending upon the ASC or DESC part of the ORDER BY.

NTILE divides the result set into the specified number of groups and then includes each value according to its ranking.

1 select empno

2 ,ename

3 ,hiredate

4 ,rank() over (order by hiredate) rank

5 ,ntile(3) over (order by hiredate) ntile3

6* from emp

EMPNO ENAME HIREDATE RANK NTILE3

---------- ---------- --------- ---------- ----------

7369 SMITH 17-DEC-80 1 1

7499 ALLEN 20-FEB-81 2 1

7521 WARD 22-FEB-81 3 1

7566 JONES 02-APR-81 4 1

7698 BLAKE 01-MAY-81 5 1

7782 CLARK 09-JUN-81 6 2

7844 TURNER 08-SEP-81 7 2

7654 MARTIN 28-SEP-81 8 2

7839 KING 17-NOV-81 9 2

7900 JAMES 03-DEC-81 10 2

7902 FORD 03-DEC-81 10 3

7934 MILLER 23-JAN-82 12 3

7788 SCOTT 09-DEC-82 13 3

7876 ADAMS 12-JAN-83 14 3

ROW_NUMBER assigns a unique value (starting with 1, incrementing by 1 in the ORDER BY sequence) to each row
within the partition.

1 select ename

2 ,job

3 ,hiredate

4 ,rank() over (partition by job order by hiredate desc) hire_ra

5 ,row_number() over(partition by job order by hiredate) row_nbr

6 from emp

7* order by job,hiredate,ename

ENAME JOB HIREDATE HIRE_RANK ROW_NBR

Implementing Data Warehouses and Business Intelligence

Copyright © 2001, John Jay King 8 Paper # 440

---------- --------- --------- ---------- ----------

FORD ANALYST 03-DEC-81 2 1

SCOTT ANALYST 09-DEC-82 1 2

SMITH CLERK 17-DEC-80 4 1

JAMES CLERK 03-DEC-81 3 2

MILLER CLERK 23-JAN-82 2 3

ADAMS CLERK 12-JAN-83 1 4

JONES MANAGER 02-APR-81 3 1

BLAKE MANAGER 01-MAY-81 2 2

CLARK MANAGER 09-JUN-81 1 3

KING PRESIDENT 17-NOV-81 1 1

ALLEN SALESMAN 20-FEB-81 4 1

WARD SALESMAN 22-FEB-81 3 2

TURNER SALESMAN 08-SEP-81 2 3

MARTIN SALESMAN 28-SEP-81 1 4

CUME_DIST
CUME_DIST determines the position of a specific value relative to a set of values.

1 select deptno,job,sum(sal) sum_sal

2 , cume_dist() over (order by job) cume

3 from emp

4* group by deptno,job

DEPTNO JOB SUM_SAL CUME

---------- --------- ---------- ----------

20 ANALYST 6000 .111111111

10 CLERK 1300 .444444444

20 CLERK 1900 .444444444

30 CLERK 950 .444444444

10 MANAGER 2450 .777777778

20 MANAGER 2975 .777777778

30 MANAGER 2850 .777777778

10 PRESIDENT 5000 .888888889

30 SALESMAN 5600 1

Partition adds some meaning to this

1 select deptno,job,sum(sal) sum_sal

2 , cume_dist() over (order by job) cume

3 from emp

4* group by deptno,job

Implementing Data Warehouses and Business Intelligence

Copyright © 2001, John Jay King 9 Paper # 440

DEPTNO JOB SUM_SAL CUME

---------- --------- ---------- ----------

20 ANALYST 6000 .111111111

10 CLERK 1300 .444444444

20 CLERK 1900 .444444444

30 CLERK 950 .444444444

10 MANAGER 2450 .777777778

20 MANAGER 2975 .777777778

30 MANAGER 2850 .777777778

10 PRESIDENT 5000 .888888889

30 SALESMAN 5600 1

PERCENT_RANK calculates the percent rank of a value relative to the number of rows.

1 select deptno,job,sum(sal) sum_sal

2 , percent_rank() over (order by deptno) pct_rank

3 from emp

4 group by deptno,job

5* order by job,deptno

DEPTNO JOB SUM_SAL PCT_RANK

---------- --------- ---------- ----------

20 ANALYST 6000 .375

10 CLERK 1300 0

20 CLERK 1900 .375

30 CLERK 950 .75

10 MANAGER 2450 0

20 MANAGER 2975 .375

30 MANAGER 2850 .75

10 PRESIDENT 5000 0

30 SALESMAN 5600 .75

Again, Partitioning adds a little clarity.

1 select deptno,job,sum(sal) sum_sal

2 , percent_rank() over (partition by job order by deptno) pct_rank

3 from emp

4 group by deptno,job

5* order by job,deptno

Implementing Data Warehouses and Business Intelligence

Copyright © 2001, John Jay King 10 Paper # 440

DEPTNO JOB SUM_SAL PCT_RANK

---------- --------- ---------- ----------

20 ANALYST 6000 0

10 CLERK 1300 0

20 CLERK 1900 .5

30 CLERK 950 1

10 MANAGER 2450 0

20 MANAGER 2975 .5

30 MANAGER 2850 1

10 PRESIDENT 5000 0

30 SALESMAN 5600 0

WINDOWING
Windowing functions create moving, centered, and cumulative aggregates based upon the value of rows that depend upon
rows in the other window. The Windowing functions that may be used are AVG, COUNT, MAX, MIN, STDDEV, SUM,
VARIANCE, FIRST_VALUE, and LAST_VALUE. Bounds include CURRENT ROW, UNBOUNDED PRECEDING,
and UNBOUNDED FOLLOWING.

1 select empno

2 ,deptno

3 ,sal

4 ,sum(sal) over (partition by deptno

5 order by empno

6 rows 2 preceding) as sumsal

7 from emp

8* order by deptno,empno

EMPNO DEPTNO SAL SUMSAL

---------- ---------- ---------- ----------

7782 10 2450 2450

7839 10 5000 7450

7934 10 1300 8750

7369 20 800 800

7566 20 2975 3775

7788 20 3000 6775

7876 20 1100 7075

7902 20 3000 7100

7499 30 1600 1600

7521 30 1250 2850

7654 30 1250 4100

7698 30 2850 5350

7844 30 1500 5600

7900 30 950 5300

Implementing Data Warehouses and Business Intelligence

Copyright © 2001, John Jay King 11 Paper # 440

A moving average may be created using bounds. Bounds include a number of rows in addition to a range.

1 select deptno

2 ,empno

3 ,hiredate

4 ,sal

5 ,avg(sal) over (partition by deptno

6 order by hiredate

7 range between interval '10' month preceding

8 and interval '10' month following) ten_day

9 from emp

10* order by deptno,hiredate,empno

DEPTNO EMPNO HIREDATE SAL TEN_DAY

---------- ---------- --------- ---------- ----------

10 7782 09-JUN-81 2450 2916.66667

10 7839 17-NOV-81 5000 2916.66667

10 7934 23-JAN-82 1300 2916.66667

20 7369 17-DEC-80 800 1887.5

20 7566 02-APR-81 2975 2258.33333

20 7902 03-DEC-81 3000 2987.5

20 7788 09-DEC-82 3000 2050

20 7876 12-JAN-83 1100 2050

30 7499 20-FEB-81 1600 1566.66667

30 7521 22-FEB-81 1250 1566.66667

30 7698 01-MAY-81 2850 1566.66667

30 7844 08-SEP-81 1500 1566.66667

30 7654 28-SEP-81 1250 1566.66667

30 7900 03-DEC-81 950 1566.66667

In addition to the aggregates that are familiar, two special functions are available: FIRST_VALUE returns the first value in the
window, LAST_VALUE returns the last.

Implementing Data Warehouses and Business Intelligence

Copyright © 2001, John Jay King 12 Paper # 440

1 select deptno

2 ,empno

3 ,hiredate

4 ,sal

5 ,avg(sal) over (partition by deptno

6 order by hiredate

7 range between interval '3' month preceding

8 and interval '3' month following) three_mon

9 ,first_value(sal) over (partition by deptno

10 order by hiredate

11 range between interval '3' month preceding

12 and interval '3' month following) first_val

13 ,last_value(sal) over (partition by deptno

14 order by hiredate

15 range between interval '3' month preceding

16 and interval '3' month following) last_val

17 from emp

18* order by deptno,hiredate,empno

DEPTNO EMPNO HIREDATE SAL THREE_MON FIRST_VAL LAST_VAL

---------- ---------- --------- ---------- ---------- ---------- ----------

10 7782 09-JUN-81 2450 2450 2450 2450

10 7839 17-NOV-81 5000 3150 5000 1300

10 7934 23-JAN-82 1300 3150 5000 1300

20 7369 17-DEC-80 800 800 800 800

20 7566 02-APR-81 2975 2975 2975 2975

20 7902 03-DEC-81 3000 3000 3000 3000

20 7788 09-DEC-82 3000 2050 3000 1100

20 7876 12-JAN-83 1100 2050 3000 1100

30 7499 20-FEB-81 1600 1900 1600 2850

30 7521 22-FEB-81 1250 1900 1600 2850

30 7698 01-MAY-81 2850 1900 1600 2850

30 7844 08-SEP-81 1500 1233.33333 1500 950

30 7654 28-SEP-81 1250 1233.33333 1500 950

30 7900 03-DEC-81 950 1233.33333 1500 950

REPORTING
Reporting functions use the values that have been generated by other aggregates. The aggregates that may be used include
AVG, COUNT, MAX, MIN, STDDEV, SUM, and VARIANCE. Reporting functions may only be used in the SELECT and
ORDER BY clause.

Implementing Data Warehouses and Business Intelligence

Copyright © 2001, John Jay King 13 Paper # 440

1 select deptno

2 ,job

3 ,sal

4 ,maxsal

5 from (select deptno

6 ,job

7 ,sal

8 ,max(sal) over

9 (partition by deptno) maxsal

10 from emp)

11* where sal = maxsal

DEPTNO JOB SAL MAXSAL

---------- --------- ---------- ----------

10 PRESIDENT 5000 5000

20 ANALYST 3000 3000

20 ANALYST 3000 3000

30 MANAGER 2850 2850

The ratio_to_report function computes the ration of the value to the aggregate value.

1 select deptno

2 ,sum(sal) sumsal

3 ,sum(sum(sal)) over () sumsumsal

4 ,ratio_to_report(sum(sal)) over () ratio

5 from emp

6* group by deptno

DEPTNO SUMSAL SUMSUMSAL RATIO

---------- ---------- ---------- ----------

10 8750 29025 .301464255

20 10875 29025 .374677003

30 9400 29025 .323858742

LAG/LEAD
LAG and LEAD obtain values from other rows in the same table. This is particularly useful when dealing with time periods
but is not limited to time.

Implementing Data Warehouses and Business Intelligence

Copyright © 2001, John Jay King 14 Paper # 440

1 select empno

2 ,ename

3 ,lag(empno,1) over (order by empno) lag1_emp

4 ,lead(empno,1) over (order by empno) lead1_emp

5 ,lag(empno,3) over (order by empno) lag3_emp

6 ,lead(empno,3) over (order by empno) lead3_emp

7* from emp

EMPNO ENAME LAG1_EMP LEAD1_EMP LAG3_EMP LEAD3_EMP

---------- ---------- ---------- ---------- ---------- ----------

7369 SMITH 7499 7566

7499 ALLEN 7369 7521 7654

7521 WARD 7499 7566 7698

7566 JONES 7521 7654 7369 7782

7654 MARTIN 7566 7698 7499 7788

7698 BLAKE 7654 7782 7521 7839

7782 CLARK 7698 7788 7566 7844

7788 SCOTT 7782 7839 7654 7876

7839 KING 7788 7844 7698 7900

7844 TURNER 7839 7876 7782 7902

7876 ADAMS 7844 7900 7788 7934

7900 JAMES 7876 7902 7839

7902 FORD 7900 7934 7844

7934 MILLER 7902 7876

STATISTICS
New statistical functions provide complex mathematics not present in Oracle previously incuding CORR, COVAR_POP,
COVAR_SAMP, REGR_AVGX, REGR_AVGY, REGR_COUNT, REGR_INTERCEPT, REGR_R2, REGR_SLOPE,
REGR_SXX, REGR_SYY, REGR_SXY, STDDEV_POP, STDDEV_SAMP, VAR_POP, and VAR_SAMP.

Implementing Data Warehouses and Business Intelligence

Copyright © 2001, John Jay King 15 Paper # 440

CONCLUSION
This paper has presented the new analytic functions supported by Oracle. Lag and Lead compare values of rows to other rows
in the same table. Ranking support "top n" queries and other ranking issues, reporting aggregates compare aggregates to non-
aggregates, windowing aggregates provide cumulative or moving aggregates, and statistics provide complex statistical features.

ABOUT THE AUTHOR
John King is a Partner in King Training Resources, a firm providing instructor-led training since 1988 across the United States
and Internationally. John has worked with Oracle products and the database since Version 4 and has been providing training
to application developers since Oracle Version 5. He has presented papers at various industry events including IOUG-A Live!,
UKOUG Conference, EOUG Conference, ECO, SEOUC, RMOUG Training Days, and the ODTUG conference.

John Jay King

King Training Resources

6341 South Williams Street

Littleton, CO 80121-2627

U.S.A.

Phone: 1.303.798.5727 1.800.252.0652 (within the U.S.)

Fax: 1.303.730.8542

Email: john@kingtraining.com

If you have any questions or comments, please contact me in the fashion most convenient to you. Copies of this paper are
available for download from King Training Resources upon request (www.kingtraining.com).

BIBLIOGRAPHY
Oracle8i SQL Reference, Oracle Corporation
Oracle8i Data Warehousing Guide, Oracle Corporation

