
Analyze This!
 Using Oracle8i Analytic

Functions

Analyze This!
 Using Oracle8i Analytic

Functions

John Jay King
King Training Resources

6341 South Williams Street
Littleton, CO 80121-2627 USA

www.kingtraining.com
800.252.0652 or 303.798.5727

Copyright @ 2001, King Training Resources, All rights reserved

ObjectivesObjectives

• Learn about the Oracle8i analytic functions
• Understand the different “families” available:

– Ranking
– Windowing
– Reporting
– Lag/Lead
– Statistics

• Be familiar with the options used to make analytic
 functions useful
• Be ready to use the analytic functions to create
 useful business statistics

Oracle8i Analytic FunctionsOracle8i Analytic Functions

◆ Oracle 8.1.6 Analytic functions allow complex statistical
calculations to be accomplished more easily.

◆ Analytic functions lend statistical muscle that has in the
past called for joins, unions, and complex programming.

◆ Performance is improved (sometimes significantly)
because the functions are performing work that
previously required self-joins and unions.

◆ Using Analytic functions requires far less SQL coding
than previously required to accomplish the same task
because one SQL statement takes the place of many.

◆ Analytic functions allow division of results into ordered
groups using the over clause and its subordinate query
partition clause, windowing clause, and order by clause.

Analytic Function FamiliesAnalytic Function Families

◆ Lag/Lead to compare values of rows in the
same table

◆ Ranking to support "top n" queries
◆ Reporting to compare aggregates to non-

aggregates
◆ Windowing to allow moving average types

of queries
◆ Statistics to extend the current power of

aggregation

Introduction to Analytic "Families"Introduction to Analytic "Families"

◆ Ranking, Windowing, Reporting, and
Lag/Lead are sometimes referred to as
"Analytic Families" in Oracle literature.

◆ Statistics provide sophisticated aggregation
capabilities.

◆ Analytic functions are not intended to
replace OLAP environments, rather, they
may be used by OLAP products like
Oracle's Express to improve query speed.

Analytic ProcessingAnalytic Processing

◆ Using Analytic functions adds a new stage
to the processing of a query:

◆ First all joining, WHERE clause, GROUP
BY, and HAVING clause activity selects
desired rows

◆ Next, the Analytic functions and any
partitioning they require take place

◆ Finally, SELECT DISTINCT and ORDER
BY processing occurs for the query occur

Analytic Function Query PartitionsAnalytic Function Query Partitions

◆ Query result sets are divided into ordered groups
called Partitions
(unrelated to database table partitioning).

◆ Partitioning (like all analytic functions) takes
place after GROUP BY.

◆ Result sets may be divided into as many
partitions as makes sense for the values being
derived.

◆ Partitioning may be performed using expressions
or column values.

Query Partition Result SetsQuery Partition Result Sets

◆ Each result set may represent a single Partition,
a few larger Partitions, or many small Partitions.

◆ Each Partition may be represented by a sliding
Window defining the range of rows used for
calculations on the Current Row.

Analytic Function WindowsAnalytic Function Windows

◆ Windows may be defined representing a number
of physical rows or some logical interval
(e.g. time).

◆ Each Window has a starting row and an ending
row and may slide on either (or both) ends.

◆ A cumulative sum's Window might be the
(unmoving) first and last records of the partition.
Or, a moving average would slide at both ends
so that the averaging made sense.

◆ Windows may represent 1 or more rows in a
partition (or the entire partition).

Current RowCurrent Row

◆ Each analytic function is based upon a current
row within a Window (defined by OVER (ORDER
BY) clause). Each calculation returns values that
involve the rows included in the current Window.

◆ Current Row is the reference point setting the
start and end of a window. For example a
moving average defines a window that begins in
a range or rows surrounding the current row.

◆ The Current Row is inside a Window, a Window
is inside a Partition, and a Partition is inside of
the Result Set.

Ranking FunctionsRanking Functions

◆ Ranking functions allow values that
represent some internal ordering of data

◆ Ranking supports such queries as
"top 5 products sold by country" or
"find the top three salespersons in each
city" requiring that all rows be processed
before performing the function.

Windowing FunctionsWindowing Functions

◆ Windowing functions allow moving and
cumulative capability to answer questions
like "show a moving average for the last 3
months of sales by department" or
"show a cumulative sum of sales by
country."

Reporting FunctionsReporting Functions

◆ Reporting functions allow the comparison
of aggregates to non-aggregates such as
"percent of total department salaries
represented by each employee."

Lag/Lead FunctionsLag/Lead Functions

◆ Lag/Lead compares values in different
rows of the same table without having to
code self-joins.

StatisticsStatistics

◆ Statistics provide a new set of group-level
or aggregate data.

◆ Unlike the original aggregate functions,
Statistics functions generally require two
parameters.

RankingRanking

◆ Ranking functions include: RANK,
DENSE_RANK, CUME_DIST,
PERCENT_RANK , NTILE, and
ROW_NUMBER

◆ RANK produces a ranking within a given
set of rows using the OVER clause
ORDER BY to define the sort sequence of
the group. In the event of two values being
equal the ranking skips as appropriate
(e.g. 10->12 in following example).

Ranking SyntaxRanking Syntax

 1 select empno
 2 ,ename
 3 ,hiredate
 4 ,rank() over (order by hiredate) rank
 5 from emp
 6* order by hiredate,ename

Ranking OutputRanking Output
EMPNO ENAME HIREDATE RANK

————— ————— ————- —————

7369 SMITH 17-DEC-80 1

7499 ALLEN 20-FEB-81 2

7521 WARD 22-FEB-81 3

7566 JONES 02-APR-81 4

7698 BLAKE 01-MAY-81 5

7782 CLARK 09-JUN-81 6

7844 TURNER 08-SEP-81 7

7654 MARTIN 28-SEP-81 8

7839 KING 17-NOV-81 9

7902 FORD 03-DEC-81 10

7900 JAMES 03-DEC-81 10

7934 MILLER 23-JAN-82 12

7788 SCOTT 09-DEC-82 13

7876 ADAMS 12-JAN-83 14

RANK with GROUP AggregatesRANK with GROUP Aggregates

◆ Rank may also be used with GROUP
aggregation:

 1 select dname,
 2 nvl(avg(sal),0) avg_sal,
 3 count(empno) nbr_emps,
 4 rank() over (order by nvl(avg(sal),0)) rank
 5 from emp,dept
 6 where dept.deptno = emp.deptno(+)
 7* group by dname

RANK with GROUP OutputRANK with GROUP Output
DNAME AVG_SAL NBR_EMPS RANK

——————— ————— ———— —————

OPERATIONS 0 0 1

SALES 1566.66667 6 2

RESEARCH 2175 5 3

ACCOUNTING 2916.66667 3 4

DENSE_RANKDENSE_RANK

◆ DENSE_RANK produces a ranking within
a given set of rows using the OVER clause
ORDER BY to define the sort sequence of

◆ If two values are equal the ranking does
not skip.

 1 select empno
 2 ,ename
 3 ,hiredate
 4 ,dense_rank() over (order by hiredate) rank
 5 from emp
 6* order by hiredate,ename

DENSE_RANK OutputDENSE_RANK Output
EMPNO ENAME HIREDATE RANK

————— ————— ----————- —————

7369 SMITH 17-DEC-80 1

7499 ALLEN 20-FEB-81 2

7521 WARD 22-FEB-81 3

7566 JONES 02-APR-81 4

7698 BLAKE 01-MAY-81 5

7782 CLARK 09-JUN-81 6

7844 TURNER 08-SEP-81 7

7654 MARTIN 28-SEP-81 8

7839 KING 17-NOV-81 9

7902 FORD 03-DEC-81 10

7900 JAMES 03-DEC-81 10

7934 MILLER 23-JAN-82 11

7788 SCOTT 09-DEC-82 12

7876 ADAMS 12-JAN-83 13

Partitioning with RankPartitioning with Rank
◆ Partitioning defines where the rank is reset

 1 select empno
 2 ,ename
 3 ,hiredate
 4 ,deptno
 5 ,rank() over (partition by deptno order by hiredate) rank
 6 from emp
 7* order by hiredate,ename

Partitioning with Rank ResultsPartitioning with Rank Results
EMPNO ENAME HIREDATE DEPTNO RANK

————— ————— ----————- ————— —————

7369 SMITH 17-DEC-80 20 1

7499 ALLEN 20-FEB-81 30 1

7521 WARD 22-FEB-81 30 2

7566 JONES 02-APR-81 20 2

7698 BLAKE 01-MAY-81 30 3

7782 CLARK 09-JUN-81 10 1

7844 TURNER 08-SEP-81 30 4

7654 MARTIN 28-SEP-81 30 5

7839 KING 17-NOV-81 10 2

7902 FORD 03-DEC-81 20 3

7900 JAMES 03-DEC-81 30 6

7934 MILLER 23-JAN-82 10 3

7788 SCOTT 09-DEC-82 20 4

7876 ADAMS 12-JAN-83 20 5

Partitioning and AggregatesPartitioning and Aggregates

◆ Partitioning also works with aggregates.

 1 select dname,
 2 job,
 3 nvl(avg(sal),0) avg_sal,
 4 count(empno) nbr_emps,
 5 rank() over (partition by dname order by nvl(avg(sal),0)) rank
 6 from emp,dept
 7 where dept.deptno = emp.deptno(+)
 8* group by dname, job

Partitioning and Aggregates OutputPartitioning and Aggregates Output
DNAME JOB AVG_SAL NBR_EMPS RANK

——————— ————- --————— ————— —————

ACCOUNTING CLERK 1300 1 1

ACCOUNTING MANAGER 2450 1 2

ACCOUNTING PRESIDENT 5000 1 3

OPERATIONS 0 0 1

RESEARCH CLERK 950 2 1

RESEARCH MANAGER 2975 1 2

RESEARCH ANALYST 3000 2 3

SALES CLERK 950 1 1

SALES SALESMAN 1400 4 2

SALES MANAGER 2850 1 3

Rank with CUBE or ROLLUPRank with CUBE or ROLLUP

◆ Rank also might include rows created by
CUBE or ROLLUP.

 1 select deptno Department
 2 ,decode(grouping(job),1,'All Employee
 3 ,sum(sal) "Total SAL"
 4 ,rank() over (order by sum(sal)) rank
 5 from emp
 6* group by rollup (deptno,job)

Rank CUBE/ROLLUP OutputRank CUBE/ROLLUP Output
DEPARTMENT JOB Total SAL RANK

————— ——————- ————— —————

30 CLERK 950 1

10 CLERK 1300 2

20 CLERK 1900 3

30 MANAGER 2850 5

20 MANAGER 2975 6

10 PRESIDENT 5000 7

30 SALESMAN 5600 8

20 ANALYST 6000 9

10 All Employees 8750 10

30 All Employees 9400 11

20 All Employees 10875 12

All Employees 29025 13

Rank with GROUPING FunctionRank with GROUPING Function

◆ The GROUPING() function provided with
ROLLUP and CUBE may also be used.

 1 select deptno Department
 2 ,decode(grouping(job),1,'All Employees',job) job
 3 ,sum(sal) "Total SAL"
 4 ,rank() over (partition by grouping(job) order by sum(sal)) rank
 5 from emp
 6* group by rollup (deptno,job)

Rank with GROUPING OutputRank with GROUPING Output
DEPARTMENT JOB Total SAL RANK

————— ——————- ————— —————

30 CLERK 950 1

10 CLERK 1300 2

20 CLERK 1900 3

10 MANAGER 2450 4

30 MANAGER 2850 5

20 MANAGER 2975 6

10 PRESIDENT 5000 7

30 SALESMAN 5600 8

20 ANALYST 6000 9

10 All Employees 8750 1

30 All Employees 9400 2

20 All Employees 10875 3

All Employees 29025 4

"Top N" Queries using
RANK/DENSE_RANK
"Top N" Queries using
RANK/DENSE_RANK

◆ "Top N" queries may be solved easily by using
RANK or DENSE_RANK in dynamic view (query
in FROM clause).

◆ NULLs are treated like normal values and for
ranking are treated as equal to other NULLs.

◆ The ORDER BY clause may specify NULLS
FIRST or NULLS LAST.

◆ If unspecified, NULLS are treated as larger than
any other value and appear depending upon the
ASC or DESC part of the ORDER BY.

“Top N” Syntax“Top N” Syntax
 1 select dynemp.ename
 2 ,dynemp.job
 3 ,dynemp.sal
 4 ,dynemp.rank
 5 from (select ename
 6 ,sal
 7 ,job
 8 ,dense_rank() over (partition by job order by sal desc) rank
 9 from emp) dynemp
 10 where dynemp.rank < 3
 11 order by dynemp.job
 12* ,dynemp.rank

“Top N” Output“Top N” Output
ENAME JOB SAL RANK

————— ————- ————— —————

SCOTT ANALYST 3000 1

FORD ANALYST 3000 1

MILLER CLERK 1300 1

ADAMS CLERK 1100 2

JONES MANAGER 2975 1

BLAKE MANAGER 2850 2

KING PRESIDENT 5000 1

ALLEN SALESMAN 1600 1

TURNER SALESMAN 1500 2

Top 2 Sales of Tennis RacketsTop 2 Sales of Tennis Rackets
◆ Using the Oracle Customer and Sales tables:

select custid,prodname,avg_sales,rank
 from (select state,city,customer.custid,prodname
 ,rank() over (partition by prodname
 order by nvl(avg(amount),0) desc) rank
 ,avg(amount) avg_sales
 from customer,sales
 where customer.custid = sales.custid
 group by state,city,customer.custid,prodname)
 where prodname like 'ACE TENNIS RACKET%'
 and rank < 3
 order by prodname,rank

Top 2 Sales: OutputTop 2 Sales: Output

CUSTID PRODNAME AVG_SALES RANK

------ ----------------------- --------- ------

102 ACE TENNIS RACKET I 16569 1

104 ACE TENNIS RACKET I 3000 2

106 ACE TENNIS RACKET II 4584 1

105 ACE TENNIS RACKET II 4500 2

NTILENTILE

◆ NTILE divides the result set into the
specified number of groups and then
includes each value according to its
ranking.

 1 select empno
 2 ,ename
 3 ,hiredate
 4 ,rank() over (order by hiredate) rank
 5 ,ntile(3) over (order by hiredate) ntile3
 6* from emp

NTILE OutputNTILE Output
EMPNO ENAME HIREDATE RANK NTILE3

————— ————— ————----- ————— —————

7369 SMITH 17-DEC-80 1 1

7499 ALLEN 20-FEB-81 2 1

7521 WARD 22-FEB-81 3 1

7566 JONES 02-APR-81 4 1

7698 BLAKE 01-MAY-81 5 1

7782 CLARK 09-JUN-81 6 2

7844 TURNER 08-SEP-81 7 2

7654 MARTIN 28-SEP-81 8 2

7839 KING 17-NOV-81 9 2

7900 JAMES 03-DEC-81 10 2

7902 FORD 03-DEC-81 10 3

7934 MILLER 23-JAN-82 12 3

7788 SCOTT 09-DEC-82 13 3

7876 ADAMS 12-JAN-83 14 3

ROW_NUMBERROW_NUMBER

◆ ROW_NUMBER assigns a unique value
(starting with 1, incrementing by 1 in the
ORDER BY sequence) to each row within
the partition.

1 select ename
2 ,job
3 ,hiredate
4 ,rank() over (partition by job order by hiredate desc) hire_rank
5 ,row_number() over(partition by job order by hiredate) row_nbr
6 from emp
7* order by job,hiredate,ename

ROW_NUMBER OutputROW_NUMBER Output
ENAME JOB HIREDATE HIRE_RANK ROW_NBR

————— ---————- ----————- ————— —————

FORD ANALYST 03-DEC-81 2 1

SCOTT ANALYST 09-DEC-82 1 2

SMITH CLERK 17-DEC-80 4 1

JAMES CLERK 03-DEC-81 3 2

MILLER CLERK 23-JAN-82 2 3

ADAMS CLERK 12-JAN-83 1 4

JONES MANAGER 02-APR-81 3 1

BLAKE MANAGER 01-MAY-81 2 2

CLARK MANAGER 09-JUN-81 1 3

KING PRESIDENT 17-NOV-81 1 1

ALLEN SALESMAN 20-FEB-81 4 1

WARD SALESMAN 22-FEB-81 3 2

TURNER SALESMAN 08-SEP-81 2 3

MARTIN SALESMAN 28-SEP-81 1 4

CUME_DISTCUME_DIST

◆ CUME_DIST determines the position of a
specific value relative to a set of values.

 1 select deptno,job,sum(sal) sum_sal
 2 , cume_dist() over (order by job) cume
 3 from emp
 4* group by deptno,job

CUME_DIST OutputCUME_DIST Output
DEPTNO JOB SUM_SAL CUME

————— ————- ————— ———-------——

20 ANALYST 6000 .111111111

10 CLERK 1300 .444444444

20 CLERK 1900 .444444444

30 CLERK 950 .444444444

10 MANAGER 2450 .777777778

20 MANAGER 2975 .777777778

30 MANAGER 2850 .777777778

10 PRESIDENT 5000 .888888889

30 SALESMAN 5600 1

CUME_DIST with PartitionCUME_DIST with Partition
◆ Partition adds some meaning to the

previous example:

 1 select deptno,job,sum(sal) sum_sal
 2 , cume_dist() over (partition by job order by deptno) cume
 3 from emp
 4 group by deptno,job
 5* order by job,deptno

CUME_DIST with Partition OutputCUME_DIST with Partition Output
DEPTNO JOB SUM_SAL CUME

-------- --------- ---------- ----------

20 ANALYST 6000 1

10 CLERK 1300 .333333333

20 CLERK 1900 .666666667

30 CLERK 950 1

10 MANAGER 2450 .333333333

20 MANAGER 2975 .666666667

30 MANAGER 2850 1

10 PRESIDENT 5000 1

30 SALESMAN 5600 1

PERCENT_RANKPERCENT_RANK

◆ PERCENT_RANK calculates the percent
rank of a value relative to the number of
rows.

 1 select deptno,job,sum(sal) sum_sal
 2 , percent_rank() over (order by deptno) pct_rank
 3 from emp
 4 group by deptno,job
 5* order by job,deptno

PERCENT_RANK OutputPERCENT_RANK Output
DEPTNO JOB SUM_SAL PCT_RANK

————— ————- ————— —————

20 ANALYST 6000 .375

10 CLERK 1300 0

20 CLERK 1900 .375

30 CLERK 950 .75

10 MANAGER 2450 0

20 MANAGER 2975 .375

30 MANAGER 2850 .75

10 PRESIDENT 5000 0

30 SALESMAN 5600 .75

PERCENT_RANK with PartitionPERCENT_RANK with Partition

◆ Again, Partitioning adds a little clarity.

 1 select deptno,job,sum(sal) sum_sal
 2 , percent_rank() over (partition by job order by deptno) pct_rank
 3 from emp
 4 group by deptno,job
 5* order by job,deptno

PERCENT_RANK
with Partition Output
PERCENT_RANK

with Partition Output
DEPTNO JOB SUM_SAL PCT_RANK

————— ———- ————— —————

20 ANALYST 6000 0

10 CLERK 1300 0

20 CLERK 1900 .5

30 CLERK 950 1

10 MANAGER 2450 0

20 MANAGER 2975 .5

30 MANAGER 2850 1

10 PRESIDENT 5000 0

30 SALESMAN 5600 0

WindowingWindowing

◆ Windowing functions create moving,
centered, and cumulative aggregates based
upon the value of rows that depend upon rows in
the other window.

◆ The Windowing functions that may be used are:
AVG, COUNT, MAX, MIN, STDDEV, SUM,
VARIANCE, FIRST_VALUE, and LAST_VALUE.

◆ Bounds include CURRENT ROW, UNBOUNDED
PRECEDING, and UNBOUNDED FOLLOWING.

Windowing SyntaxWindowing Syntax

 1 select empno
 2 ,deptno
 3 ,sal
 4 ,sum(sal) over (partition by deptno
 5 order by empno
 6 rows 2 preceding) as sumsal
 7 from emp
 8* order by deptno,empno

Windowing OutputWindowing Output
EMPNO DEPTNO SAL SUMSAL

————— ————— ————— —————

7782 10 2450 2450

7839 10 5000 7450

7934 10 1300 8750

7369 20 800 800

7566 20 2975 3775

7788 20 3000 6775

7876 20 1100 7075

7902 20 3000 7100

7499 30 1600 1600

7521 30 1250 2850

7654 30 1250 4100

7698 30 2850 5350

7844 30 1500 5600

7900 30 950 5300

Moving Average with BoundsMoving Average with Bounds

◆ Moving averages may be created using bounds.
◆ Bounds include a number of rows in addition to a

range.
 1 select deptno
 2 ,empno
 3 ,hiredate
 4 ,sal
 5 ,avg(sal) over (partition by deptno
 6 order by hiredate
 7 range between interval '10' month preceding
 8 and interval '10' month following) twenty_mo
 9 from emp
 10* order by deptno,hiredate,empno

Moving Average with Bounds OutputMoving Average with Bounds Output
DEPTNO EMPNO HIREDATE SAL TWENTY_MO

————— ————— ----————- ———— ----—————

10 7782 09-JUN-81 2450 2916.66667

10 7839 17-NOV-81 5000 2916.66667

10 7934 23-JAN-82 1300 2916.66667

20 7369 17-DEC-80 800 1887.5

20 7566 02-APR-81 2975 2258.33333

20 7902 03-DEC-81 3000 2987.5

20 7788 09-DEC-82 3000 2050

20 7876 12-JAN-83 1100 2050

30 7499 20-FEB-81 1600 1566.66667

30 7521 22-FEB-81 1250 1566.66667

30 7698 01-MAY-81 2850 1566.66667

30 7844 08-SEP-81 1500 1566.66667

30 7654 28-SEP-81 1250 1566.66667

30 7900 03-DEC-81 950 1566.66667

FIRST_VALUE and LAST_VALUEFIRST_VALUE and LAST_VALUE

◆ In addition to the aggregates that are
familiar, two special functions are available:
– FIRST_VALUE returns the first value in the

window
– LAST_VALUE returns the last value in a

window

FIRST_VALUE & LAST_VALUE SyntaxFIRST_VALUE & LAST_VALUE Syntax

 select deptno, empno, hiredate, sal,
avg(sal) over (partition by deptno order by hiredate

 range between interval '3' month preceding
 and interval '3' month following) three_mon

 ,first_value(sal) over (partition by deptno order by hiredate
 range between interval '3' month preceding
 and interval '3' month following) first_val
 ,last_value(sal) over (partition by deptno
 order by hiredate
 range between interval '3' month preceding
 and interval '3' month following) last_val
 from emp
 order by deptno,hiredate,empno

FIRST_VALUE & LAST_VALUE OutputFIRST_VALUE & LAST_VALUE Output

DEPTNO EMPNO HIREDATE SAL THREE_MON FIRST_VAL LAST_VAL

————— ————— —----———- ————— ————— ————— —————

10 7782 09-JUN-81 2450 2450 2450 2450

10 7839 17-NOV-81 5000 3150 5000 1300

10 7934 23-JAN-82 1300 3150 5000 1300

20 7369 17-DEC-80 800 800 800 800

20 7566 02-APR-81 2975 2975 2975 2975

20 7902 03-DEC-81 3000 3000 3000 3000

20 7788 09-DEC-82 3000 2050 3000 1100

20 7876 12-JAN-83 1100 2050 3000 1100

30 7499 20-FEB-81 1600 1900 1600 2850

30 7521 22-FEB-81 1250 1900 1600 2850

30 7698 01-MAY-81 2850 1900 1600 2850

30 7844 08-SEP-81 1500 1233.33333 1500 950

30 7654 28-SEP-81 1250 1233.33333 1500 950

30 7900 03-DEC-81 950 1233.33333 1500 950

ReportingReporting

◆ Reporting functions use the values that
have been generated by other aggregates.

◆ The aggregates that may be used include
AVG, COUNT, MAX, MIN, STDDEV, SUM,
and VARIANCE.

◆ Reporting functions may only be used in
the SELECT and ORDER BY clause.

Reporting SyntaxReporting Syntax
 1 select deptno
 2 ,job
 3 ,sal
 4 ,maxsal
 5 from (select deptno
 6 ,job
 7 ,sal
 8 ,max(sal) over
 9 (partition by deptno) maxsal
 10 from emp)
 11* where sal = maxsal

Reporting OutputReporting Output
DEPTNO JOB SAL MAXSAL

————— ————- ————— —————

10 PRESIDENT 5000 5000

20 ANALYST 3000 3000

20 ANALYST 3000 3000

30 MANAGER 2850 2850

RATIO_TO_REPORTRATIO_TO_REPORT

◆ The ratio_to_report function computes the
ration of the value to the aggregate value.

 1 select deptno
 2 ,sum(sal) sumsal
 3 ,sum(sum(sal)) over () sumsumsal
 4 ,ratio_to_report(sum(sal)) over () ratio
 5 from emp
 6* group by deptno

RATIO_TO_REPORT OutputRATIO_TO_REPORT Output
DEPTNO SUMSAL SUMSUMSAL RATIO

————— ————— ————— -----—————

10 8750 29025 .301464255

20 10875 29025 .374677003

30 9400 29025 .323858742

Lag/LeadLag/Lead

◆ LAG and LEAD obtain values from other
rows in the same table.

◆ Lag and lead are particularly useful when
dealing with time periods but are not limited
to time.

 1 select empno
 2 ,ename
 3 ,lag(empno,1) over (order by empno) lag1_emp
 4 ,lead(empno,1) over (order by empno) lead1_emp
 5 ,lag(empno,3) over (order by empno) lag3_emp
 6 ,lead(empno,3) over (order by empno) lead3_emp
 7* from emp

Lag/Lead OutputLag/Lead Output
EMPNO ENAME LAG1_EMP LEAD1_EMP LAG3_EMP LEAD3_EMP

————— ————— ————— ————— ————— —————

7369 SMITH 7499 7566

7499 ALLEN 7369 7521 7654

7521 WARD 7499 7566 7698

7566 JONES 7521 7654 7369 7782

7654 MARTIN 7566 7698 7499 7788

7698 BLAKE 7654 7782 7521 7839

7782 CLARK 7698 7788 7566 7844

7788 SCOTT 7782 7839 7654 7876

7839 KING 7788 7844 7698 7900

7844 TURNER 7839 7876 7782 7902

7876 ADAMS 7844 7900 7788 7934

7900 JAMES 7876 7902 7839

7902 FORD 7900 7934 7844

7934 MILLER 7902 7876

Statistics FunctionsStatistics Functions
◆ CORR
◆ COVAR_POP
◆ COVAR_SAMP
◆ REGR_AVGX
◆ REGR_AVGY
◆ REGR_COUNT
◆ REGR_INTERCEPT
◆ REGR_R2
◆ REGR_SLOPE
◆ REGR_SXX
◆ REGR_SYY

◆ REGR_SXY
◆ STDDEV_POP
◆ STDDEV_SAMP
◆ VAR_POP
◆ VAR_SAMP

Oracle 8.1.7 CASE ExpressionOracle 8.1.7 CASE Expression
select custid,prodname,

case when rank = 1 then ’1 - Platinum'

when rank = 2 then ’2 - Gold'

when rank = 3 then ’3 - Silver'

else 'N/A'

end as rank

from (select state,city,customer.custid,prodname

,rank() over (partition by prodname

order by nvl(avg(amount),0) desc)

as rank

from customer,sales

where customer.custid = sales.custid

group by state,city,customer.custid,prodname)

where prodname like 'ACE TENNIS RACKET%'

and rank < 4

order by prodname,rank

ConclusionConclusion

◆ This paper has presented the new analytic
functions supported by Oracle including:
– Lag and Lead compare values of rows to other

rows in the same table.
– Ranking support "top n" queries and other

ranking issues, reporting aggregates compare
aggregates to non-aggregates

– Windowing aggregates provide cumulative or
moving aggregates, and statistics provide
complex statistical features

To contact the author:To contact the author:

John King
King Training Resources
6341 South Williams Street
Littleton, CO 80121-2627 USA
1.800.252.0652 - 1.303.798.5727
Email: john@kingtraining.com

