
Copyright @ 2010, John Jay King1

Futurecast with
Oracle Model Clause

Presented by: John Jay King
King Training Resources - john@kingtraining.com

Download this paper from: http://www.kingtraining.com

Copyright @ 2010, John Jay King

Copyright @ 2010, John Jay King2http://www.kingtraining.com

Session Objectives

• Learn how to use the SQL Model clause
• Be ready to use various options of Model to

represent query data in a “spreadsheet”
• Use Model to create predictions of future values

Copyright @ 2010, John Jay King3http://www.kingtraining.com

Model Clause
• The SQL Model clause is a powerful extension of

the SELECT statement (new with Oracle 10g)
• Model provides the ability to present the output of

a SELECT in the form of multi-dimensional arrays
(like a spreadsheet) and apply formulas to the
array (cell) values

• The Model clause defines a multidimensional
array by mapping the columns of a query into
three groups: partitioning, dimension, and
measure columns
– Partitions
– Dimensions
– Measures

Copyright @ 2010, John Jay King4http://www.kingtraining.com

Partitions, Dimensions, Measures
• Partitions define logical blocks of the result set

– Similar to partitions with analytical functions
– Each partition used by formulas as an independent array;

Model rules are applied the cells of each partition
• Dimensions identify Measure cells within Partitions
• Each Measure column identifies characteristics such

as date, region and product name (similar to
measures in a star schema fact table)
– Measures normally contain numeric values such as sales

units or cost
– Each cell is accessed within its partition by specifying its

full combination of dimensions

Copyright @ 2010, John Jay King5http://www.kingtraining.com

Model Clause Syntax
MODEL [<global reference options>]
[<reference models>]
[MAIN <main-name>]
[PARTITION BY (<cols>)]
DIMENSION BY (<cols>)
MEASURES (<cols>)
[<reference options>]
[RULES] <rule options>
(<rule>, <rule>,.., <rule>)
<global reference options> ::= <reference options> <ret-opt>
<ret-opt> ::= RETURN {ALL|UPDATED} ROWS
<reference options> ::=[IGNORE NAV | [KEEP NAV]
[UNIQUE DIMENSION | UNIQUE SINGLE REFERENCE]
<rule options> ::=
[UPSERT | UPDATE]
[AUTOMATIC ORDER | SEQUENTIAL ORDER]
[ITERATE (<number>) [UNTIL <condition>]]
<reference models> ::= REFERENCE ON <ref-name> ON (<query>)
DIMENSION BY (<cols>) MEASURES (<cols>) <reference options>

Copyright @ 2010, John Jay King6http://www.kingtraining.com

How Model Fits in SQL

• Model is evaluated after all clauses except:
SELECT DISTINCT and ORDER BY

• When using Model the SELECT and ORDER BY
may not contain aggregates or analytic functions

• Aggregates and analytic functions may be
specified in PARTITION, DIMENSION, and
MEASURES lists but must be given alias names;
the alias names may be used in SELECT or
ORDER BY

• Only columns listed as MEASURES may be
updated

Copyright @ 2010, John Jay King7http://www.kingtraining.com

Model and Subqueries
• Subqueries are not allowed in RULES (except in

FOR constructs, see below); however subqueries
may be included in MEASURES if given an alias
name

• Subqueries may be used as part of the FOR
construct on the left-hand side of RULES provided
that:
– Subquery returns less than 10,000 rows
– Subquery is not correlated
– Subquery may not be defined using WITH
– Subquery cursor must be shareable

Copyright @ 2010, John Jay King8http://www.kingtraining.com

Oracle Goodies
• The Oracle Database Data Warehousing Guide

provides many explanations and examples of the
Model clause and its use

• The examples in these notes were based upon
the Oracle-supplied “SH” schema’s data

• The example on the next two pages uses a
“sales_view” definition from the Oracle manual

• On a later page is a Materialized View definition
used for the code examples in this paper

Copyright @ 2010, John Jay King9http://www.kingtraining.com

Model Example
SELECT substr(country,1,20) country,substr(prod,1,15) prod,

year,sales FROM sales_view
WHERE country IN ('Canada','Germany')
MODEL RETURN UPDATED ROWS

PARTITION BY (country)
DIMENSION BY (prod, year)
MEASURES (sale sales)
RULES (sales['ZooperT',2002] = sales['ZooperT',2001]

+ sales['ZooperT',2000],
sales['HulaWhirl',2002] = sales['HulaWhirl',2001],
sales['HulaZoop Pkg',2002] = sales['ZooperT',2002]

+ sales['HulaWhirl',2002])

COUNTRY PROD YEAR SALES
-------------------- --------------- ---- ----------
Canada HulaZoop Pkg 2002 92613.16
Canada Zoop Tube 2002 9299.08
Canada Hula Twirl 2002 83314.08
Germany HulaZoop Pkg 2002 103816.60
Germany Zoop Tube 2002 11631.13
Germany Hula Twirl 2002 92185.47

Copyright @ 2010, John Jay King10http://www.kingtraining.com

Model Example Explained
• The statement on the preceding page calculates

sales values for two products and defines sales for
a new product based upon the other two products
– Statement partitions data by country

• Formulas are applied to one country at a time
• Sales fact data ends with 2001, any rules defining values for 2002 or

later will insert new “Updated” cells
– First rule defines sales of “Zoop Tube” game in 2002 as the sum of

its sales in 2000 and 2001
– The second rule defines sales for “Hula Twirl” in 2002 to be the

same value they were for 2001
– Third rule defines "HulaZoop Pkg" that is the sum of the Zoop Tube

and Hula Twirl values for 2002 -- the rules for Zoop Tube and Hula
Twirl must be executed before the HulaZoop Pkg rule

Rules may perform calculations and/or call functions

Copyright @ 2010, John Jay King11http://www.kingtraining.com

Creating the MView
CREATE materialized VIEW sales_mview AS

SELECT substr(country_name,1,20) country
,substr(prod_name,1,15) product
,calendar_year year
,SUM(amount_sold) tot_amt
,SUM(quantity_sold) tot_qty
,COUNT(amount_sold) tot_sales

FROM sh.sales join sh.times
on sales.time_id = times.time_id

join sh.products
on sales.prod_id = products.prod_id

join sh.customers
on sales.cust_id = customers.cust_id

join sh.countries
on customers.country_id = countries.country_id

GROUP BY country_name
,prod_name
,calendar_year

ORDER BY country
,product
,year

Copyright @ 2010, John Jay King12http://www.kingtraining.com

Query Existing Data
• The query below retrieves data from two products

and two countries for all years in the existing data
select country

,product
,year
,round(tot_sales,0) sales

from sales_mview
where country in ('Australia','Canada')

and product in ('Mouse Pad','Deluxe Mouse')
order by country

,product
,year

Copyright @ 2010, John Jay King13http://www.kingtraining.com

Existing Data
COUNTRY PRODUCT YEAR SALES
-------------------- --------------- ---------- ----------
Australia Deluxe Mouse 1998 86
Australia Deluxe Mouse 1999 140
Australia Deluxe Mouse 2000 78
Australia Deluxe Mouse 2001 211
Australia Mouse Pad 1998 195
Australia Mouse Pad 1999 311
Australia Mouse Pad 2000 264
Australia Mouse Pad 2001 332
Canada Deluxe Mouse 1998 65
Canada Deluxe Mouse 1999 109
Canada Deluxe Mouse 2000 38
Canada Deluxe Mouse 2001 61
Canada Mouse Pad 1998 93
Canada Mouse Pad 1999 174
Canada Mouse Pad 2000 144
Canada Mouse Pad 2001 186

Copyright @ 2010, John Jay King14http://www.kingtraining.com

Predicting the Future
• The existing data goes through 2001, what if we

want to project future sales?
• The Model clause allows the creation of a

“spreadsheet” layout where each result
represents a “cell”

• The rules sub-clause allows us to establish a set
of rules for treating cell-values and even predict
future values

Copyright @ 2010, John Jay King15http://www.kingtraining.com

First Model
model return all rows

partition by (country)
dimension by (product,year)
measures (tot_sales sales)
rules (
sales['Mouse Pad',2002] =

sales['Mouse Pad',2001] * 1.1
,sales['Deluxe Mouse',2002] =

sales['Deluxe Mouse',2001] * 1.3
)

– Return all rows (both existing and new)
– Group (partition) rows by country
– Define product and year as dimension values
– Define tot_sales as the value of each cell, rename “sales”
– Use rules to set sales for 2002 (a new year) to 2001’s value times

some multiplier (I made them up…)

Copyright @ 2010, John Jay King16http://www.kingtraining.com

Model Output Rows

• The Model clause may specify how the
output of the Model is to be displayed
– RETURN UPDATED ROWS Statement output

includes only rows
created by Model

– RETURN ALL ROWS Statement output
(default) includes all rows

from query plus
rows created by
Model

Copyright @ 2010, John Jay King17http://www.kingtraining.com

RETURN ALL ROWS
select country

,product
,year
,round(sales,0) sales

from sales_mview
where country in ('Australia','Canada')
and product in ('Mouse Pad','Deluxe Mouse')

model return all rows
partition by (country)
dimension by (product,year)
measures (tot_sales sales)
rules (sales['Mouse Pad',2002] =

sales['Mouse Pad',2001] * 1.1
,sales['Deluxe Mouse',2002] =

sales['Deluxe Mouse',2001] * 1.3)
order by country,product,year

Copyright @ 2010, John Jay King18http://www.kingtraining.com

ALL ROWS Model Results
COUNTRY PRODUCT YEAR SALES
-------------------- --------------- ---------- ----------
Australia Deluxe Mouse 1998 86
Australia Deluxe Mouse 1999 140
Australia Deluxe Mouse 2000 78
Australia Deluxe Mouse 2001 211
Australia Deluxe Mouse 2002 274
Australia Mouse Pad 1998 195
Australia Mouse Pad 1999 311
Australia Mouse Pad 2000 264
Australia Mouse Pad 2001 332
Australia Mouse Pad 2002 365
Canada Deluxe Mouse 1998 65
Canada Deluxe Mouse 1999 109
Canada Deluxe Mouse 2000 38
Canada Deluxe Mouse 2001 61
Canada Deluxe Mouse 2002 79
Canada Mouse Pad 1998 93
Canada Mouse Pad 1999 174
Canada Mouse Pad 2000 144
Canada Mouse Pad 2001 186
Canada Mouse Pad 2002 205

Copyright @ 2010, John Jay King19http://www.kingtraining.com

UPDATED ROWS only
select country

,product
,year
,round(units_sold,0) units_sold

from sales_mview
where country in ('Australia','Canada')
and product in ('Mouse Pad','Deluxe Mouse')

model return updated rows
partition by (country)
dimension by (product,year)
measures (tot_sales units_sold)
rules (units_sold['Mouse Pad',2002] =

units_sold['Mouse Pad',2001] * 1.1
,units_sold['Deluxe Mouse',2002] =

units_sold['Deluxe Mouse',2001] * 1.3)
order by country,product,year

Copyright @ 2010, John Jay King20http://www.kingtraining.com

Updated Rows
COUNTRY PRODUCT YEAR UNITS_SOLD
-------------------- --------------- ---------- ----------
Australia Deluxe Mouse 2002 274
Australia Mouse Pad 2002 365
Canada Deluxe Mouse 2002 79
Canada Mouse Pad 2002 205

Copyright @ 2010, John Jay King21http://www.kingtraining.com

Model-Related SQL Functions
• CV Current value of

dimension in Model
clause

• ITERATION_NUMBER Returns iteration
number in Model
clause rules

• PRESENTNNV Present Value of cell
in Model clause
(nulls converted)

• PRESENTV Present Value of cell
in Model clause

• PREVIOUS Returns cell value at
beginning of Model clause
iteration

Note: These functions are invalid anywhere
in SQL except as part of a Model clause

Copyright @ 2010, John Jay King22http://www.kingtraining.com

CV

• The CV function provides the current value of
a cell and may only be used on the
right-hand side of a Model clause Rule
– CV() Returns the current value of the

dimension column in the same
position Rule’s left-hand side

– CV(dimcol) Returns the current value of the
named dimension column

Copyright @ 2010, John Jay King23http://www.kingtraining.com

ITERATION_NUMBER
• ITERATION_NUMBER may be used only when

ITERATE(number) is used in a Model clause Rule
• ITERATION_NUMBER has no

parameters/arguments
• ITERATION_NUMBER returns the integer value of

the last completed iteration through the Model Rules
(returns 0 in first iteration)

• It returns an integer representing the last completed
iteration through the Model Rules
(current iteration plus 1); ITERATION_NUMBER
returns 0 during the first iteration

Copyright @ 2010, John Jay King24http://www.kingtraining.com

• PRESENTV and PRESENTNNV may be used only
on the right-hand side of a Model Rule to

• Both PRESENTV and PRESENTNNV use the same
syntax:
PRESENTV(cellref,cell_exists,cell_doesnotexist)
PRESENTNNV(cellref,cell_exists,cell_doesnotexist)

– PRESENTV tests if the referenced cell existed prior to Model clause execution
• If so the first expression (cell_exists above) is executed
• If the referenced cell did not exist prior to Model clause execution the second

expression (cell_doesnotexist above) is executed
– PRESENTNNV also tests if the referenced cell existed prior to Model clause

execution but also checks to see if the existing cell had a null value;
• If the referenced cell existed and was not null prior to the Model clause the first

expression (cell_exists above) is executed
• If the referenced cell did not exist prior to Model clause execution or did exist and

was null the second expression (cell_doesnotexist above) is executed

PRESENTNNV & PRESENTV

Copyright @ 2010, John Jay King25http://www.kingtraining.com

PREVIOUS

• PREVIOUS may only be used as part of
ITERATE...UNTIL in a Model Rule

• PREVIOUS returns the value of the
referenced cell at the beginning of the
iteration

PREVIOUS(cell-reference)

Copyright @ 2010, John Jay King26http://www.kingtraining.com

Model-specific Conditions

• Two conditions have been added to SQL that
are allowed only in a Model clause

• dimension_column IS ANY or ANY are used
to include all values from a dimension column
including NULLs (always TRUE)

• cell_reference IS PRESENT returns TRUE if
the referenced cell is present before the Model
clause is executed; FALSE if it is not

Copyright @ 2010, John Jay King27http://www.kingtraining.com

Reference Options

• The Model clause provides several keywords
that may be specified at a GLOBAL level or
at a LOCAL level
– IGNORE NAV
– KEEP NAV
– UNIQUE DIMENSION
– UNIQUE SINGLE REFERENCE

Copyright @ 2010, John Jay King28http://www.kingtraining.com

IGNORE NAV & KEEP NAV
• IGNORE NAV and KEEP NAV control whether or

not cells not provided by the query result set are
treated as zero by calculations
– KEEP NAV Unavailable cell values

are not changed (default)
– IGNORE NAV Unavailable numeric cell

values are treated as:
• 0 for numeric data
• Empty string for character data
• ’01-JAN-2001’ for date data
• NULL for other data types

Copyright @ 2010, John Jay King29http://www.kingtraining.com

Unique Cells

• UNIQUE DIMENSION and UNIQUE SINGLE
REFERENCE control the checking for cell
uniqueness
– UNIQUE DIMENSION Requires that the combination

(default) of PARTITION & DIMENSION
columns must uniquely identify
each cell in the model

– UNIQUE SINGLE REFERENCE Requires that the
PARTITION & DIMENSION
columns must uniquely identify
single cells on the right-hand
side of Model Rules

Copyright @ 2010, John Jay King30http://www.kingtraining.com

Rule Options

• The Model clause provides several Rule
keywords that may be specified at a GLOBAL
level or at a LOCAL level
– UPDATE
– UPSERT
– UPSERT ALL
– AUTOMATIC ORDER
– SEQUENTIAL ORDER

Copyright @ 2010, John Jay King31http://www.kingtraining.com

UPSERT & UPDATE

• UPSERT, UPSERT ALL, and UPDATE control
whether updates will occur if the cell on the left-hand
side of a Rule does not exist or if the cell reference is
not positional
– UPSERT Updates cell values if the cell exists and

(default) creates the cell if it does not exist and uses
positional (non-symbolic) cell notation

– UPSERT ALL Like UPSERT but allows creation of new
cells with use of ANY

– UPDATE Updates existing cells only

Copyright @ 2010, John Jay King32http://www.kingtraining.com

Order of RULE Execution

• AUTOMATIC ORDER and SEQUENTIAL
ORDER control the order of Rule execution
– AUTOMATIC ORDER Oracle decides sequence

of Rule execution
– SEQUENTIAL ORDER Rules execute in order

(default) specified by Model clause

Copyright @ 2010, John Jay King33http://www.kingtraining.com

Recapping Options
• SEQUENTIAL ORDER rules are defined in the order they appear in the

rules sub-clause
• AUTOMATIC ORDER rules are considered according to dependencies
• IGNORE NAV treats missing values as:

– 0 for numeric data
– Empty string for character data
– ’01-JAN-2001’ for date data
– NULL for other data types

• KEEP NAV treats nulls normally
• UNIQUE DIMENSION (default), PARTITION BY and DIMENSION BY

columns must uniquely identify each and every cell
• UNIQUE SINGLE REFERENCE, PARTITION BY and DIMENSION BY

uniquely identify single point references on the right-hand side of the
rules

• ITERATE (n) iterates rules specified number of times,
ITERATION_NUMBER returns current value (starts with 0)

Copyright @ 2010, John Jay King34http://www.kingtraining.com

Projecting into the Future

• The Model clause includes a special FOR
construct allowing the modification and/or
creation of many new rows (called UPSERT)
– Values may range as desired
– Increment and/or decrement value
– Use cv() function to use a cell’s current value
– UPSERT is limited to 10,000 rows

FOR dimension_value
FROM lowval TO hival

INCREMENT | DECREMENT incrval

Copyright @ 2010, John Jay King35http://www.kingtraining.com

Projection SQL
select country,product,year,round(units_sold,0) units_sold
from sales_mview
where country in ('Australia','Canada')
and product in ('Mouse Pad','Deluxe Mouse')

model return updated rows
partition by (country)
dimension by (product,year)
measures (tot_sales units_sold)
rules (
units_sold['Mouse Pad',

for year from 2001 to 2005 increment 1]
= units_sold['Mouse Pad',cv(year)-1] * 1.1

,units_sold['Deluxe Mouse',
for year from 2001 to 2005 increment 1]
= units_sold['Deluxe Mouse',cv(year)-1] * 1.3

)
order by country,product,year

Copyright @ 2010, John Jay King36http://www.kingtraining.com

Projection Results
COUNTRY PRODUCT YEAR UNITS_SOLD
-------------------- --------------- ---------- ----------
Australia Deluxe Mouse 2001 101
Australia Deluxe Mouse 2002 132
Australia Deluxe Mouse 2003 171
Australia Deluxe Mouse 2004 223
Australia Deluxe Mouse 2005 290
Australia Mouse Pad 2001 290
Australia Mouse Pad 2002 319
Australia Mouse Pad 2003 351
Australia Mouse Pad 2004 387
Australia Mouse Pad 2005 425
Canada Deluxe Mouse 2001 49
Canada Deluxe Mouse 2002 64
Canada Deluxe Mouse 2003 83
Canada Deluxe Mouse 2004 109
Canada Deluxe Mouse 2005 141
Canada Mouse Pad 2001 158
Canada Mouse Pad 2002 174
Canada Mouse Pad 2003 192
Canada Mouse Pad 2004 211
Canada Mouse Pad 2005 232

Copyright @ 2010, John Jay King37http://www.kingtraining.com

Oracle Documentation
• Oracle10g and Oracle 11g

– Oracle Database Data Warehousing Guide
– SQL Reference
– PL/SQL User’s Guide and Reference
– Application Developer's Guide - Object-

Relational Features
• Lots of papers and examples:

http://technet.oracle.com
http://tahiti.oracle.com

Copyright @ 2010, John Jay King38http://www.kingtraining.com

Wrapping it all Up
• The Oracle 10g Model clause adds new

capabilities to better serve the users of our data
• The Model clause’s ability to provide the data in a

cell-by-cell “spreadsheet” makes output more
readable than ever before

• Rules provide the ability to add new cells to the
Model based upon calculations performed on
existing data cells

Copyright @ 2010, John Jay King39

Training Days 2011

February 15-17 2011
Save the dates!

Copyright @ 2010, John Jay King40

June 27-July 1 2010
Washington, DC

ODTUG Kaleidoscope 2010

Copyright @ 2010, John Jay King41

Futurecast with
Oracle Model Clause

To contact the author:
John King
King Training Resources
6341 South Williams Street
Littleton, CO 80121-2627 USA
1.800.252.0652 - 1.303.798.5727
Email: john@kingtraining.com Today’s slides are on the web:TodayToday’’s slides are on the web:s slides are on the web:

http://www.kingtraining.com

Thanks for your attention!

▬

Please fill out session Evaluations

