
June 2005 Copyright @ 2005, John Jay King Page 1

Presented to

John Jay King
King Training Resources
john@kingtraining.com

Download this paper and code examples from:
http://www.kingtraining.com

Grab the Tiger by the Tail!
Java 5 New Features

June 2005 Copyright @ 2005, John Jay King Page 2

Session Objectives

• Know how Java 5 differs from previous
releases

• Understand how to use improved syntax
features

• Be able to use new features to simplify
existing programs

June 2005 Copyright @ 2005, John Jay King Page 3

Introduction to Java 5.0

• Java has become the dominant development language for
web-based systems.

• Since its release to the public in 1995 (Java 1.0) Java has
matured improving functionality and performance with
each new release.

• In September 2004 Sun released Java 5.0
(code-name "Tiger").

• This session discusses and demonstrates what's new in
Java syntax as well as some internal improvements that
make this the best release of Java ever.

• Specific topics include: generics, enhanced for loop
iteration, autoboxing/unboxing, typesafe enumerations,
static imports, annotations, formatted (ala printf) output,
variable argument lists, input scanner, and other features.

June 2005 Copyright @ 2005, John Jay King Page 4

Numbering change
• The current release's actual name is Java 2 Standard Edition 5.0, commonly

referred to by Sun as Java 5.
• Sun changed version numbering scheme; J2SE 1.5 is now J2SE 5.0 (the

leading "1" was dropped).
• Code name during product development was "Tiger" hence the name of this

paper (Tiger was a pretty popular product code name in 2005 with other
vendors too).

• Most Sun documentation including Javadoc references 1.5 rather than 5.0
when specifying the new version.

• Java 2 Version 5.0 (1.5) still uses "Java 2" to denote the second generation
of Java and to illustrate the family nature of J2SE, J2EE, and J2ME.

• The "1.5" version numbering will show up in some other places you might
notice:

– Java 1.5 shows up when using the java and javac executables:
• java -version (returns java version "1.5.0")
• java -fullversion (returns java full version "1.5.0-b64")
• javac -source 1.5 (javac -source 5 also works)

– Java 1.5 shows up in the sytem properties java.version and java.vm.version as
well as in the "@since" Javadoc entries for new classes and members.

– Installation directories for JDK and JRE are "jdk1.5.0" and "jre1.5.0" respectively.

June 2005 Copyright @ 2005, John Jay King Page 5

JDK/SDK nomenclature

• Sun has resurrected the name "JDK" as in
"Java 2 JDK" rather than using the "SDK"
moniker adopted by Java 1.2, 1.3, and 1.4.

• Sun has also returned to calling the runtime
environment "JRE" rather than "J2RE".

• Here are the "official" names from Sun:
– Java™ 2 Platform Standard Edition 5.0 J2SE™ 5.0
– J2SE™ Development Kit 5.0 JDK™ 5.0
– J2SE™ Runtime Environment 5.0 JRE 5.0

June 2005 Copyright @ 2005, John Jay King Page 6

Java Grows Over Time

• Here is a comparison of Java library size from
version to version:
– Java 1.2 1500+ Classes and Interfaces
– Java 1.3.1 1800+ Classes and Interfaces
– Java 1.4 2700+ Classes and Interfaces
– Java 5 (Java 1.5) 3200+ Classes and Interfaces

June 2005 Copyright @ 2005, John Jay King Page 7

New Java Syntax

• Java's syntax has had several improvements.
• Topics covered specifically in this paper include:

– generics
– enhanced for loop
– auto boxing/unboxing
– typesafe enumerations
– static import
– metadata via annotations
– formatted output
– variable argument lists
– simplified input processing via scanner
– improved synchronization
– More…

June 2005 Copyright @ 2005, John Jay King Page 8

Need for Generics
• At first glance Java's Generics feels familiar to those of us who have used

C++ templates, but Java Generics are so much more.
• Java provides many opportunities for manipulating objects where the actual

object type is stripped and must be re-supplied using a cast when the object
is used later.

• For instance, look at the code below:
ArrayList oldStyle = new ArrayList();
oldStyle.add(new String("Hello"));
oldStyle.add(new String("there"));
oldStyle.add(new Integer(12)); // ok the old way
oldStyle.add(new String("whoops"));
// following loop raise runtime error
for (Iterator i = oldStyle.iterator();i.hasNext();) {

System.out.println("Entry = "
+ (String) i.next());

}
• This code generates the runtime error "ClassCastException" since the third

item being retrieved from the ArrayList is not the expected data type.

June 2005 Copyright @ 2005, John Jay King Page 9

Generics Example

• Using Generics allows specification of the allowable data type for a Java
object so that the compiler will catch data type errors.

• Generic syntax specifies the data type inside less-than "<" and greater-
than ">" symbols as follows:

ArrayList<String> newStyle = new ArrayList<String>();

• The example below show the String class but the class may be any
class available in your CLASSPATH.

• The compiler uses the data type specified to restrict what may be placed
into the object at compile time.

• The rewritten example looks something like this:
ArrayList<String> newStyle = new ArrayList<String>();
newStyle.add(new String("Hello"));
newStyle.add(new String("there"));
// following line raises compile error so it is commented
//newStyle.add(new Integer(12)); // compile error
newStyle.add(new String("whoops"));
for (Iterator<String> i = newStyle.iterator();i.hasNext();) {

System.out.println("Entry = " + (String) i.next());
}

June 2005 Copyright @ 2005, John Jay King Page 10

• The "lint" command has long been used in the Unix world to verify C
program syntax, data type use, and portability of code.

• Java 5 (1.5) compiler adds "-Xlint" switch allowing compiler to flag
potential:
javac UsingGenerics.java -Xlint:unchecked -deprecation

• Options for Xlint include:
– all Get all lint warnings
– deprecation Warns about deprecated API use

(similar to -deprecation)
– fallthrough Flags cases in a switch statement that "fall through"

to the next case
– finally Indicates an "finally" block that cannot reach

completion
– path Warns of path directories specified on command

line that do not exist
– serial Indicates that one or more Serializable classes

do not have serialVersionUID defined
– unchecked Warns about unchecked use of generic types

Lint is not just in your navel!

June 2005 Copyright @ 2005, John Jay King Page 11

Lint Warnings

• Here’s what Lint warnings look like:

C:\JavaTiger\src\samples\UsingGenerics.java:30:
warning: [unchecked] unchecked call to add(E) as a
member of the raw type java.util.ArrayList

oldStyle.add(new Integer(12));
^

C:\JavaTiger\src\samples\UsingGenerics.java:31:
warning: [unchecked] unchecked call to add(E) as a
member of the raw type java.util.ArrayList

oldStyle.add(new String("whoops"));

June 2005 Copyright @ 2005, John Jay King Page 12

Additions to Arrays

• java.util.Arrays class has new additions including a toString() method
to prints the contents of any array/collection.
int[] anArray = { 1, 3, 5, 7, 9, 11, 13, 15, 16, 20 };
System.out.println(Arrays.toString(anArray));

– Generates the following output:
[1, 3, 5, 7, 9, 11, 13, 15, 16, 20]

• Another method Arrays.deepToString() displays the contents of a
multi-dimensional array. Given the following array:
int[][] apartment = new int[5][4];

– The results of using Arrays.toString() and Arrays.deepToString()
are illustrated below.

– First, using Arrays.toString() the contents of the first level show as
addresses (Windows PC used for example):

[[I@10b62c9, [I@82ba41, [I@923e30, [I@130c19b, [I@1f6a7b9]

– Next, using Arrays.deepToString() the contents of the array are
listed:

[[0, 0, 0, 0], [0, 1, 2, 3], [0, 4, 5, 6], [0, 7, 8, 9], [0, 10,
11, 12]]

• Arrays also added new Arrays.deepEquals(array1,array1),
Arrays.hashCode() and Arrays.deepHashCode() methods

June 2005 Copyright @ 2005, John Jay King Page 13

Enhanced for loop

• Beginning with Java 5 (Java 1.5) a new style of “for” loop
• The new for loops are sometimes called "for-in" loops

public class ForEachLoop {
public static void main (String[] args) {

String[] lastName = new String[5];
lastName[0] = "Winklemann";
lastName[1] = "Ruiz";
lastName[2] = "Gandhi";
lastName[3] = "Yakazuki";
lastName[4] = "Jones";
for (String thisName : lastName) {

System.out.println("Name is " + thisName);
}

} // end main
} // end ForEachLoop class
– This code loops through each entry in an array or collection

object returning one value at a time for processing. In other
words an Iterator is used without an Iterator being defined!

June 2005 Copyright @ 2005, John Jay King Page 14

For-In Syntax

• The new "for" construct is equally at home with
either a traditional array or an object of some
collection type:

for (String thisName : lastName) {
System.out.println("Name is " + thisName);

}

– Data type of one item in array/collection (String above)
– Local name used for returned item in for loop

(thisName above)
– : (colon, think of it as the word “in”)
– Name of array or collection object that implements the

new java.lang.Iterable interface (lastName above)

June 2005 Copyright @ 2005, John Jay King Page 15

Autoboxing and Unboxing
• Java 5 (Java 1.5) and later automatically “box” and ”unbox” values

Integer intObject = new Integer(123);
int intPrimitive = intObject; // pre-Java 5 error
double doublePrimitive = 123.45;
Double doubleObject = doublePrimitive; // pre-Java 5 error

• In Java 1.4 (or earlier releases), properly moving data between
wrapper class objects and primitives required more work:
Integer intObject = new Integer(123);
int intPrimitive = intObject.intValue();
double doublePrimitive = 123.45;
Double doubleObject = new Double(doublePrimitive);

• The advent of automatic Boxing and automatic Unboxing greatly
simplifies code when using Collection and other types of objects.

• Boxing and Unboxing is also important since Primitive data and
Reference Type data are stored in different places.

• Primitives representing local variables are stored on the stack while
objects are stored in heap memory.

June 2005 Copyright @ 2005, John Jay King Page 16

Boxing

• When an integer is assigned to an object, the system,
“boxing” makes a copy of the value on the heap and
points the object to the new value.

June 2005 Copyright @ 2005, John Jay King Page 17

UnBoxing

• When an object assigned to an integer, “unboxing” copies
the value from the heap into the variable's storage in the
stack

June 2005 Copyright @ 2005, John Jay King Page 18

Enum

• Another new Java 5 feature that will look familiar to C programmers is
the "Enum" data type.

• Enum allows assignment of a specific set of values to associated

package samples;
public class UsingEnums {

public enum Weekdays {
Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday

};
public UsingEnums() {

Weekdays weekDays;
}
public static void main(String[] args) {

UsingEnums myUE = new UsingEnums();
}

}

June 2005 Copyright @ 2005, John Jay King Page 19

Static import

• Java 5 (Java 1.5) allows import of static items
• Useful when same methods or variables used repeatedly
import static java.lang.Double.parseDouble;
import static java.lang.Integer.parseInt;
public class StaticImportDemo {

public static void main(String[] args) {
String intValue = "123";
String dblValue = "567.89";
double resultValue = 0;
try {

resultValue = parseInt(intValue)
+ parseDouble(dblValue);
System.out.println("resultValue is "
+ resultValue);

}
catch (NumberFormatException e) {

System.out.println("Either intValue or"
" dblValue not numeric");

}
return;

}
}

June 2005 Copyright @ 2005, John Jay King Page 20

Metadata via Annotations

• Java 5 introduced a method for adding metadata to package and type
declarations, methods, constructors, parameters, fields, and variables.

• java.lang.Override, indicates method overrides a superclass method

@Override
public String accountHtml() {

// overriding code goes here
}

– Compiler error if the method above does not match the signature of a
superclass method

java.lang.Deprecated, flags method or element as deprecated
@Deprecated public class Y2Ktools (

// deprecated code
}

– Compiler warning if code extends this class
• java.lang.SuppressWarnings, turns off compiler warnings

@SupressWarnings({"unchecked","fallthrough"})

June 2005 Copyright @ 2005, John Jay King Page 21

Formatted Output

• Even though Java offers the excellent java.text
package classes and methods for formatting of
data, people with C backgrounds still miss "printf"
and its functionality.

• Java 5 adds java.util.Formatter with new
capabilities to all of Java's output methods.

• Formatting may be applied using the locale and
may be directed to a "sink" (often a file).

• The methods "format()" and "printf()" (C
programmers say "hooray!") are synonymous.

• The PrintStream class now includes methods for
"format()" and "printf()" using the same formatting
characters.

June 2005 Copyright @ 2005, John Jay King Page 22

Format Characters
• '%b', '%B' If the argument is null, the result is "false", if it is boolean or

Boolean the result is the string returned by String.valueOf(), if it
is not null or Boolean the result is "true".

• '%h', '%H' Formats boolean output as "true"/"TRUE" ("%h"/"%H"),
"false"/"FALSE" ("%h"/"%H"), or "null"

• '%s', '%S' Formats output as String data using argument's formatTo()
method (if available) or toString()

• '%c', '%C' Formats Byte, Short, Character, or Integer as a single character
• '%d' Formats Byte, Short, Integer, Long, or BigInteger as an integer

'%o' Formats Byte, Short, Integer, Long, or BigInteger as octal
• '%x', '%X' Value (or its hashcode) formatted as hexadecimal integer
• '%e', '%E' Formats Float, Double, or BigDecimal value (exp. notation)
• '%f' Formats Float, Double, or BigDecimal value as floating-point
• '%g', '%G' Formats Float, Double, or BigDecimal value with less than six

significant digits using floating-point notation
• '%a', '%A' Formats Float, Double, or BigDecimal value with less than six

significant digits using floating-point notation with base-16 values
for the decimal part and base-10 values for the exponent

• '%t', '%T' Prefix used for date/time conversions (see below)
• '%%' Used to print a literal '%'
• '%n' Platform-specific line separator

June 2005 Copyright @ 2005, John Jay King Page 23

Time Characters

• 'H' 2-digit hour using 24-hour clock (leading zero)
• 'I' 2-digit hour using 12-hour clock (leading zero)
• 'k' Hour using 24 hour clock (0-23)
• 'l' Hour using 12-hour clock (1-12)
• 'M' 2-digit minute within hour (leading zero)
• 'S' 2-digit seconds within minute (leading zero)
• 'L' 3-digit millisecond within second (leading zeros)
• 'N' 9-digit nanosecond within second (leading zeros)
• 'p' Locale-specific morning or afternoon marker in lower
• case for "%tp" (am/pm) upper case for "%Tp" (AM/PM)
• 'z' RFC 822 time zone offset from GMT, e.g. -0800
• 'Z' String representing timezone abbreviation
• 's' Seconds since the beginning of the epoch starting

1 January 1970 00:00:00 UTC (Long value)
• 'Q' Milliseconds since the beginning of the epoch

starting 1 January 1970 00:00:00 UTC (Long value)

June 2005 Copyright @ 2005, John Jay King Page 24

Date Characters

• 'B' Locale-specific full month name ("January")
• 'b' Locale-specific abbreviated month name ("Jan")
• 'h' Same as 'b'.
• 'A' Locale-specific full name of the day of the week ("Sunday")
• 'a' Locale-specific short name of the day of the week ("Sun")
• 'C' 2-digit year (00-99), four-digit year divided by 100 (leading zero)
• 'Y' 4-digit year (0000-9999)
• 'y' Last two digits of the year (leading zeros)
• 'j' 3-digit (Julian) day of year (001-366, leading zeros)
• 'm' 2-digit month (leading zero)
• 'd' 2-digit day of month (leading zero)
• 'e' 2-digit day of month (1-31)

June 2005 Copyright @ 2005, John Jay King Page 25

Date/Time Characters

• 'R' Time formatted for the 24-hour clock as "%tH:%tM"
• 'T' Time formatted for the 24-hour clock as "%tH:%tM:%tS"
• 'r' Time formatted for the 12-hour clock as "%tI:%tM:%tS %Tp"

(morning/afternoon marker ('%Tp')
location may be locale-dependent)

• 'D' Date formatted as "%tm/%td/%ty"
• 'F' ISO 8601 complete date formatted as "%tY-%tm-%td".
• 'c' Date and time formatted as "%ta %tb %td %tT %tZ %tY",

e.g. "Sun Jul 20 16:17:00 EDT 1969"

June 2005 Copyright @ 2005, John Jay King Page 26

Special Characters

• Formatting also uses special flags to control print-related functionality
like justification, signs, and zero padding.
– '-' Right-justified output (all data types)
– '#' Left-justified output (numeric data only)
– '+' Output includes sign (numeric data only)
– ' ' Output includes leading-space for positive values

(numeric data only)
– '0' Output is zero-padded (numeric data only)
– ',' Output uses group locale-specific group

separators (numeric data only)
– '(' Output surrounds negative numbers with

parentheses (numeric data only)

June 2005 Copyright @ 2005, John Jay King Page 27

System.out.format Examples

• Here is an example of a numeric value being formatted
using System.out.format(), System.out.printf() works
identically:
double balance = 1234.56;
System.out.format("Balance is $%,6.2f",balance);

Output:
Balance is $1,234.56

• Here is an example of a date being formatted using
System.out.format():
Date today = new Date();
System.out.format("\nToday is %TF %TT",
today,today);

Output:
Today is 2005-06-09 20:15:26

June 2005 Copyright @ 2005, John Jay King Page 28

Formatter Examples

• The Formatter class may also be used to format String
data anytime, the following example shows the use of the
Formatter object and locales:

Formatter myUSformat = new Formatter();
Formatter myFRformat = new Formatter();
String balUS = myUSformat.format("Balance is $%,6.2f",

balance).toString();
String balFR = myFRformat.format(Locale.FRANCE,

"Balance is $%,6.2f",balance).toString();
System.out.println("US " + balUS);
System.out.println("FRANCE " + balFR);

Output:
US Balance is $1,234.56
FRANCE Balance is $1 234,56

June 2005 Copyright @ 2005, John Jay King Page 29

Variable argument lists
• Java 5's new variable argument lists (VarArgs) allow specification of a

method that can accept a final parameter of the same time with the
number of values to be determined at runtime.
– Only one variable argument list is allowed per method
– Variable list must be the last argument defined for the method.
– The ellipsis "…" is used to indicate that an argument might appear a variable

number of times.
• In the class below, the constructor is designed to expect a variable

number of options for the specified automobile:

public Auto (String year, String make, String model, String... options) { …)

• The variable argument list allows specification of multiple cars with varying
lists of options as shown below. Though this example is illustrated using
String data type, any data/object type may be used.

Auto johnsToy = new Auto("1969","Fiat","124 Spider", "5-speed", "disk brakes");
Auto myTruck = new Auto("1997","Ford","Expedition", "Automatic",

"Four-wheel drive","power windows","power locks",
"air-conditioning","stereo with cd changer","tinted glass");

June 2005 Copyright @ 2005, John Jay King Page 30

Scanner Input

• Console input is not common in production
programs, but it is very useful when learning Java
or creating test modules.

• Before Java 5 we frequently used System.in and
its "readLine()" method to access the keyboard.

• Java 5 introduces the java.util.Scanner class
designed specifically for this purpose greatly
reducing the amount of code needed to
communicate with the keyboard.

June 2005 Copyright @ 2005, John Jay King Page 31

Keyboard Input – Old Style
String firstName;
InputStreamReader inStream = new
InputStreamReader(System.in);
BufferedReader inBuf = new BufferedReader(inStream);
System.out.print("Please enter your first name => ");
try {

firstName = inBuf.readLine();
} // end of first try block
catch (IOException e) {

System.out.println("Problem reading first name");
return;

} // end catch block

June 2005 Copyright @ 2005, John Jay King Page 32

Keyboard Input – New Style
String lastName;
System.out.print("Please enter your last name => ");
Scanner fromkeyboard = new Scanner(System.in);
lastName = fromkeyboard.next();

• Scanner objects have several input methods:
– next() returns the next String token from the input buffer
– next(comparePattern) or next(compareString) where the next

String matching a given pattern is returned.
– Numeric variations include:

• nextBigDecimal()
• nextBigInteger()
• nextBoolean()
• nextByte()
• nextDouble()
• nextFloat()
• nextInt()
• nextLine()
• nextLong()
• nextShort()

June 2005 Copyright @ 2005, John Jay King Page 33

Synchronization
• Beginning with Java 5 (Java 1.5) the java.util.concurrent.locks,

java.util.concurrent, and java.util.concurrent.atomic packages are
available providing better locking support than provided by the
"synchronized" modifier.

• All existing code still works as before.
• The java.util.concurrent.locks.Lock interface has several methods

including:
– lock() to obtain a lock (blocking if the lock cannot be obtained)
– unlock() to release a lock
– lockInterruptibility() obtains a lock but allows interruptions
– tryLock() attempts to obtain a lock without a wait.

• The java.util.concurrent.locks.ReentrantLock class behaves very much like
using synchronized does today.

• The java.util.concurrent.locks.Condition interface allows complex and multiple
conditional waits.

• The java.util.concurrent.locks.ReadWriteLock interface allows separate locks
for reading and writing.

June 2005 Copyright @ 2005, John Jay King Page 34

StringBuilder class

• New with Java 5.0 (Java 1.5) the java.lang.StringBuilder class
provides a faster alternative to StringBuffer.

• In most ways StringBuilder works exactly the same as StringBuffer.
• StringBuilder is faster than StringBuffer because it is not ThreadSafe

and multiple threads should not access StringBuilder objects without
Synchronizing.

• Developers should use StringBuilder when speed is important in a
single-thread environment and use StringBuffer if multiple threads
might require access.

• Strings are very useful but immutable, if applications are constantly
changing the value of a String, memory is being allocated and
reallocated in an inefficient manner.

• The StringBuilder (java.lang.StringBuilder) class by contrast is
mutable and should be used for strings that will change in size or
value frequently. The efficiency difference is significant for
applications that “build” output lines by concatenating strings.

June 2005 Copyright @ 2005, John Jay King Page 35

StringBuilder Example
/** StringBuilderTest.java */
public class StringBuilderTest {

public static void main(String[] args) {

String myString = "How";
StringBuilder myStrBldr = new StringBuilder("How");

myString += " now";
myString += " Brown";
myString += " Cow?";

myStrBldr.append(" now");
myStrBldr.append(" Brown");
myStrBldr.append(" Cow?");

System.out.println("String = " + myString);
System.out.println("StringBuilder = " + myStrBldr);

}
}

June 2005 Copyright @ 2005, John Jay King Page 36

Conclusion

• Java 5 or Java 1.5 (whatever the name is) provides many
features to make the life of developer richer allowing
creation of better and more interesting programs.

• Generics and the new for loop are probably exciting
enough in their own right, but the other features all work
together to make this new release the best Java ever.

June 2005 Copyright @ 2005, John Jay King Page 37

Training Days 2006
Mark your calendar for:

February 15-16, 2006!

June 2005 Copyright @ 2005, John Jay King Page 38

To contact the author:To contact the author:
John King
King Training Resources
6341 South Williams Street
Littleton, CO 80121-2627 USA
1.800.252.0652 - 1.303.798.5727
Email: john@kingtraining.com

Today’s slides and examples are on the web:Today’s slides and examples are on the web:
http://www.kingtraining.com

Thanks for your attention!

▬

