
February 2010 Copyright @ 2010, John Jay King Page 1

Presented to

Presented by: John Jay King
King Training Resources - john@kingtraining.com

Download this paper from: http://www.kingtraining.com

Java 6 and Java 5 New Features

http://www.kingtraining.com/

February 2010 Copyright @ 2010, John Jay King Page 2

Session Objectives

• Know how Java 6 and Java 5 differ from
previous releases

• Understand how to use improved syntax
features

• Be able to use new features to simplify existing
programs

February 2010 Copyright @ 2010, John Jay King Page 3

Who Am I?

• John King – Partner, King Training Resources
• Providing training to Oracle and IT community for

over 20 years
– Databases: Oracle, DB2, SQL Server, more…
– Languages: PL/SQL, Java, C#, COBOL, PL/I, more…
– Operating Systems: Linux, Unix, Windows, z/OS
– Tools: ADF, XML, HTML, JavaScript, more…

• Leader in Service Oriented Architecture (SOA)
design and implementation

• Home is Centennial, Colorado – I like to hike and
drive in the mountains

February 2010 Copyright @ 2010, John Jay King Page 4

Introduction to Java 5 & 6

• Java has become the dominant development
language for web-based systems:
– Since its release to the public in 1995 (Java

1.0) Java has matured improving functionality
and performance with each new release

– In September 2004 Sun released Java 5.0
– In December 2006 Sun released Java 6.0

February 2010 Copyright @ 2010, John Jay King Page 5

Java 5 & 6 “In a nutshell”

• Java SE 5 contained several major updates to the Java
programming language including:
– Annotations
– Generics
– Autoboxing
– Improved looping syntax

• Java SE 6 specification focused on new specifications and
APIs including:
– XML processing and Web services
– JDBC 4.0
– Annotation-based programming
– Java compiler APIs
– Application client GUI APIs

February 2010 Copyright @ 2010, John Jay King Page 6

Numbering change

• The current release's actual name is Java Standard
Edition 6 (Java SE 6); the previous release was
Java Standard Edition 5.0, (J2SE 5)

• Sun changed version numbering with Java 5
– J2SE 1.5 is now J2SE 5.0 (leading "1" dropped)
– Most Sun documentation including Javadoc

references 1.5 rather than 5.0 when specifying
the new version

– Java 2 Version 5.0 (1.5) still uses "Java 2" to
denote the second generation of Java and to
illustrate the family nature of J2SE, J2EE, and
J2ME; Java 6 does not

– Most Sun sources use Java SE 6 for Java 6

February 2010 Copyright @ 2010, John Jay King Page 7

JDK/SDK nomenclature

• Sun has resurrected the name "JDK" as in
"Java SE JDK" rather than using the "SDK"
moniker adopted by Java 1.2, 1.3, and 1.4

• Sun has also returned to calling the runtime
environment "JRE" rather than "J2RE"

• The "official" names from Sun:
– Java™ Standard Edition 6.0 Java SE 6.0
– Java™ 2 Platform Standard Edition 5.0 J2SE™ 5.0
– Java™ SE Development Kit 6.0 JDK™ 6.0
– J2SE™ Development Kit 5.0 JDK™ 5.0
– Java SE™ Runtime Environment 6.0 JRE 6.0
– J2SE™ Runtime Environment 5.0 JRE 5.0

February 2010 Copyright @ 2010, John Jay King Page 8

Java Grows Over Time

• Here is a comparison of Java library size from
version to version:
– Java 1.2 1500+ Classes and Interfaces
– Java 1.3.1 1800+ Classes and Interfaces
– Java 1.4 2700+ Classes and Interfaces
– Java 5 (Java 1.5) 3200+ Classes and Interfaces
– Java 6 (Java 1.6) 3700+ Classes and Interfaces

February 2010 Copyright @ 2010, John Jay King Page 9

New Java Syntax

• Java's syntax has had several improvements
• Topics covered specifically in this paper include:

– generics
– enhanced for loop
– auto boxing/unboxing
– typesafe enumerations
– static import
– metadata via annotations
– formatted output
– variable argument lists
– simplified input processing via scanner
– improved synchronization
– More…

February 2010 Copyright @ 2010, John Jay King Page 10

Need for Generics

• At first glance Java's Generics feels familiar to
those of us who have used C++ templates, but
Java Generics are so much more.

• Java provides many opportunities for
manipulating objects where the actual object type
is stripped and must be re-supplied using a cast
when the object is used later

February 2010 Copyright @ 2010, John Jay King Page 11

Need for Generics: Example

• To illustrate the need for Generics; look at this:
ArrayList oldStyle = new ArrayList();
oldStyle.add(new String("Hello"));
oldStyle.add(new String("there"));
oldStyle.add(new Integer(12)); // ok the old way
oldStyle.add(new String("whoops"));
// following loop raise runtime error
for (Iterator i = oldStyle.iterator();i.hasNext();)
{

System.out.println("Entry = "
+ (String) i.next());

}
– This code generates the runtime error

"ClassCastException" since the third item being
retrieved from the ArrayList is not the expected
data type

February 2010 Copyright @ 2010, John Jay King Page 12

• Using Generics allows specification of the allowable
data type for a Java object so that the compiler will
catch data type errors.

• Generic syntax specifies the data type inside less-
than "<" and greater-than ">" symbols as follows:

ArrayList<String> newStyle = new ArrayList<String>();

Generics to the Rescue!

February 2010 Copyright @ 2010, John Jay King Page 13

• The example below shows the String class but the
class may be any class available in your
CLASSPATH

• The compiler uses the data type specified to restrict
what may be placed into the object at compile time
ArrayList<String> newStyle = new ArrayList<String>();
newStyle.add(new String("Hello"));
newStyle.add(new String("there"));
// following line raises compile error so it is commented
//newStyle.add(new Integer(12)); // compile error
newStyle.add(new String("whoops"));
for (Iterator<String> i = newStyle.iterator();i.hasNext();)
{

System.out.println("Entry = " + (String) i.next());
}

Generics Example

February 2010 Copyright @ 2010, John Jay King Page 14

• The "lint" command has long been
used in the Unix world to verify C
program syntax, data type use,
and portability of code

• New Java 5&6 compiler switch "-
Xlint" allowing compiler to flag
potential

Lint is not just in your navel!

February 2010 Copyright @ 2010, John Jay King Page 15

Java Lint Syntax

javac UsingGenerics.java -Xlint:unchecked -deprecation

• Options for Xlint include:
– all Get all lint warnings
– deprecation Warns about deprecated API use

(similar to -deprecation)
– fallthrough Flags cases in a switch statement

that "fall through" to the next case
– finally "finally" blocks cannot complete
– path Path directories specified do not exist
– serial One or more Serializable classes

do not have serialVersionUID defined
– unchecked Warns of unchecked generic type use

February 2010 Copyright @ 2010, John Jay King Page 16

Lint Warnings

• Here’s what Lint warnings look like:

C:\JavaTiger\src\samples\UsingGenerics.java:30: warning:
[unchecked] unchecked call to add(E) as a member of the raw
type java.util.ArrayList

oldStyle.add(new Integer(12));
^

C:\JavaTiger\src\samples\UsingGenerics.java:31: warning:
[unchecked] unchecked call to add(E) as a member of the raw
type java.util.ArrayList

oldStyle.add(new String("whoops"));

February 2010 Copyright @ 2010, John Jay King Page 17

• java.util.Arrays class has new methods including a
toString() method to print the contents of any
array/collection
int[] anArray = { 1, 3, 5, 7, 9, 11, 13, 15, 16, 20 };
System.out.println(Arrays.toString(anArray));

– Generates the following output:
[1, 3, 5, 7, 9, 11, 13, 15, 16, 20]

java.util.Arrays.toString()

February 2010 Copyright @ 2010, John Jay King Page 18

java.util.Arrays.deepToString()

• Arrays.deepToString() displays the contents of a
multi-dimensional array:
int[][] apartment = new int[5][4];
– The results of using Arrays.toString() and

Arrays.deepToString() are illustrated below.
– First, using Arrays.toString() the contents of the first

level show as addresses (Windows PC used for
example):

[[I@10b62c9, [I@82ba41, [I@923e30, [I@130c19b, [I@1f6a7b9]

– Next, using Arrays.deepToString() the contents of the
array are listed:

[[0, 0, 0, 0], [0, 1, 2, 3], [0, 4, 5, 6], [0, 7, 8, 9],
[0, 10, 11, 12]]

February 2010 Copyright @ 2010, John Jay King Page 19

Other Additions to Arrays

• Arrays also added three other methods:
– Arrays.deepEquals(array1,array1)
– Arrays.hashCode()
– Arrays.deepHashCode()

February 2010 Copyright @ 2010, John Jay King Page 20

• Java 5 added a new style of “for” loop (sometimes
called "for-in" loops)
String[] lastName = new String[5];
lastName[0] = "Winklemann";
lastName[1] = "Ruiz";
lastName[2] = "Gandhi";
lastName[3] = "Yakazuki";
lastName[4] = "Jones";
for (String thisName : lastName) {

System.out.println("Name is " + thisName);
}

– This code loops through each entry in an array
or collection object returning one value at a time
for processing -- an Iterator is used without an
Iterator being defined!

Enhanced “for” loop

February 2010 Copyright @ 2010, John Jay King Page 21

• The new "for" construct is equally at home with
either a traditional array or an object of some
collection type:
for (String thisName : lastName) {

System.out.println("Name is " + thisName);
}

– Data type of one item in array/collection (String above)
– Local name used for returned item in for loop

(thisName above)
– : (colon, think of it as the word “in”)
– Name of array or collection object that implements the

new java.lang.Iterable interface (lastName above)

For-In Syntax

February 2010 Copyright @ 2010, John Jay King Page 22

Object to/from Primitive Issues

• In Java 1.4 (or earlier releases), properly moving
data between wrapper class objects and
primitives required extra work:
Integer intObject = new Integer(123);
int intPrimitive = intObject.intValue();
double doublePrimitive = 123.45;
Double doubleObject = new Double(doublePrimitive);

February 2010 Copyright @ 2010, John Jay King Page 23

• Java 5 (Java 1.5) and later automatically “box”
and ”unbox” values
Integer intObject = new Integer(123);
int intPrimitive = intObject;
double doublePrimitive = 123.45;
Double doubleObject = doublePrimitive;

– The advent of automatic Boxing and automatic
Unboxing greatly simplifies code when using
Collection and other types of objects

– Boxing and Unboxing is also important since
Primitive data and Reference Type data are
stored in different places; primitives
representing local variables are stored on the
stack while objects are stored in heap memory.

Autoboxing and Unboxing

February 2010 Copyright @ 2010, John Jay King Page 24

Boxing

• When an integer is assigned to an object, the
system, “boxing” makes a copy of the value on
the heap and points the object to the new value.

February 2010 Copyright @ 2010, John Jay King Page 25

UnBoxing

• When an object assigned to an integer,
“unboxing” copies the value from the heap into the
variable's storage in the stack

February 2010 Copyright @ 2010, John Jay King Page 26

• Another new Java 5 feature that looks familiar to C
programmers is the "Enum" data type

• Enum allows assignment of a specific set of
values to associated
public class UsingEnums {

public enum Weekdays {
Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday

};
public UsingEnums() {

Weekdays weekDays;
}
public static void main(String[] args) {

UsingEnums myUE = new UsingEnums();
}

}

Enum

February 2010 Copyright @ 2010, John Jay King Page 27

Using Enum, 1

switch (testday) {
case Saturday:
case Sunday:

System.out.println("It's the weekend!");
break;

case Wednesday:
System.out.println("It's Humpday!");
break;

case Friday:
System.out.println("TGIF!");
break;

default:
System.out.println("Back to work!");

}

UsingEnums myUE = new UsingEnums(Weekdays.Sunday);

February 2010 Copyright @ 2010, John Jay King Page 28

Using Enums, 2

public enum USHolidays { new_years_day(11),
ml_king_jr_day(118),

presidents_day(215), memorial_day(531),
independence_day(74),

labor_day(96),
columbus_day(1211),veterans_day(1111),

thanksgiving(1125), christmas(1225);

// more code

if (todayIs == USHolidays.memorial_day.getDay()
|| todayIs == USHolidays.independence_day.getDay()
|| todayIs == USHolidays.labor_day.getDay()

// more code

February 2010 Copyright @ 2010, John Jay King Page 29

Static import

• Java 5 (Java 1.5) allows import of static items
when methods or variables are used repeatedly

import static java.lang.Double.parseDouble;
import static java.lang.Integer.parseInt;
public class StaticImportDemo {

public static void main(String[] args) {
String intValue = "123";
String dblValue = "567.89";
double resultValue = 0;
try { resultValue = parseInt(intValue)

+ parseDouble(dblValue);
System.out.println("resultValue is "
+ resultValue);

}
catch (NumberFormatException e) {

System.out.println("Either intValue or"
" dblValue not numeric");

}
// rest of code

February 2010 Copyright @ 2010, John Jay King Page 30

• Java 5 introduced a method for adding metadata to
package and type declarations, methods,
constructors, parameters, fields, and variables

• Java’s compiler introduces several annotations
including java.lang.Override
– java.lang.Override, indicates method overrides a

superclass method allowing a “cleaner” source
technique to override code

– Java compilers also generate errors if
annotations are used incorrectly of if other errors
occur

Metadata via Annotations

February 2010 Copyright @ 2010, John Jay King Page 31

Annotation: Override

• Given the following use of Override:
@Override
public String accountHtml() {

// overriding code goes here
}

– Compiler error if the method above does not

match the signature of a superclass method

February 2010 Copyright @ 2010, John Jay King Page 32

Annotation: Deprecated

• java.lang.Deprecated, flags method or element
as deprecated
@Deprecated
public class Y2Ktools (

// deprecated code
}

– Compiler warning if code extends this class

February 2010 Copyright @ 2010, John Jay King Page 33

Annotation: SupressWarnings

• java.lang.SuppressWarnings, turns off compiler
warnings

@SupressWarnings({"unchecked","fallthrough"})

February 2010 Copyright @ 2010, John Jay King Page 34

Formatted Output

• Even though Java offers the excellent java.text
package classes and methods for formatting of
data, people with C backgrounds still miss "printf"
and its functionality

• Java 5 added java.util.Formatter with new
capabilities to all of Java's output methods
– Formatting may be applied using the locale

and may be directed to a "sink" (often a file)
– PrintStream class includes methods for

"format()" and "printf()" using the same
formatting characters; "format()" and "printf()"
methods are synonymous

February 2010 Copyright @ 2010, John Jay King Page 35

Format Characters, 1

• '%b', '%B' If the argument is null, the result is
"false", if it is boolean or Boolean
the result is the string returned by
String.valueOf(), if it is not null or
Boolean the result is "true".

• '%h', '%H' Formats boolean output as
"true"/"TRUE" ("%h"/"%H"),
"false"/"FALSE" ("%h"/"%H"),
or "null"

• '%s', '%S' Formats output as String data using
argument's formatTo() method
(if available) or toString()

• '%c', '%C' Formats Byte, Short, Character, or
Integer as a single character

February 2010 Copyright @ 2010, John Jay King Page 36

Format Characters, 2

• '%d' Formats Byte, Short, Integer,
Long, or BigInteger as an integer

• '%o' Formats Byte, Short, Integer,
Long, or BigInteger as octal

• '%x', '%X' Value (or its hashcode) formatted
as hexadecimal integer

• '%e', '%E' Formats Float, Double, or
BigDecimal value (exp. notation)

• '%f' Formats Float, Double, or
BigDecimal value as floating-point

February 2010 Copyright @ 2010, John Jay King Page 37

Format Characters, 3

• '%g', '%G' Formats Float, Double, or
BigDecimal value with less than
six significant digits using
floating-point notation

• '%a', '%A' Formats Float, Double, or
BigDecimal value with less than six
significant digits using floating-point
notation with base-16 values for
the decimal part and base-10
values for the exponent

February 2010 Copyright @ 2010, John Jay King Page 38

Format Characters, 4

• '%t', '%T' Prefix used for date/time
conversions (see below)

• '%%' Used to print a literal '%'
• '%n' Platform-specific line

separator

February 2010 Copyright @ 2010, John Jay King Page 39

Time Characters, 1

• 'H' 2-digit hour using 24-hour clock
(leading zero)

• 'I' 2-digit hour using 12-hour clock (leading zero)
• 'k' Hour using 24 hour clock (0-23)
• 'l' Hour using 12-hour clock (1-12)
• 'M' 2-digit minute within hour (leading zero)
• 'S' 2-digit seconds within minute (leading zero)
• 'L' 3-digit millisecond within second

(leading zeros)

February 2010 Copyright @ 2010, John Jay King Page 40

Time Characters, 2

• 'N' 9-digit nanosecond within second
(leading zeros)

• 'p' Locale-specific morning or afternoon
marker in lowercase for "%tp" (am/pm) upper
case for "%Tp" (AM/PM)

• 'z' RFC 822 time zone offset from GMT,
e.g. -0800

• 'Z' String representing timezone abbreviation

February 2010 Copyright @ 2010, John Jay King Page 41

Time Characters, 3

• ‘s' Seconds since the beginning of the epoch
starting 1 January 1970 00:00:00 UTC
(Long value)

• 'Q' Milliseconds since the beginning of the epoch
starting 1 January 1970 00:00:00 UTC
(Long value)

February 2010 Copyright @ 2010, John Jay King Page 42

Date Characters, 1

• 'B' Locale-specific full month name ("January")
• 'b' Locale-specific abbreviated month name

("Jan")
• 'h' Same as 'b'.
• 'A' Locale-specific full name of the day of the

week ("Sunday")
• 'a' Locale-specific short name of the day of the

week ("Sun")

February 2010 Copyright @ 2010, John Jay King Page 43

Date Characters, 2

• 'C' 2-digit year (00-99), four-digit year divided by
100 (leading zero)

• 'Y' 4-digit year (0000-9999)
• 'y' Last two digits of the year (leading zeros)
• 'j' 3-digit (Julian) day of year (001-366,

leading zeros)
• 'm' 2-digit month (leading zero)
• 'd' 2-digit day of month (leading zero)
• 'e' 2-digit day of month (1-31)

February 2010 Copyright @ 2010, John Jay King Page 44

Date/Time Characters

• 'R' Time formatted for the 24-hour clock as
"%tH:%tM"

• 'T' Time formatted for the 24-hour clock as
"%tH:%tM:%tS"

• 'r' Time formatted for the 12-hour clock as
"%tI:%tM:%tS %Tp" (morning/afternoon
marker ('%Tp') location may be
locale-dependent)

• 'D' Date formatted as "%tm/%td/%ty"
• 'F' ISO 8601 complete date formatted as "%tY-

%tm-%td".
• 'c' Date and time formatted as "%ta %tb %td

%tT %tZ %tY",
e.g. "Sun Jul 20 16:17:00 EDT 1969"

February 2010 Copyright @ 2010, John Jay King Page 45

Special Characters

• Formatting also uses special flags to control print-
related functionality like justification, signs, and
zero padding.
– '-' Right-justified output (all data types)
– '#' Left-justified output (numeric data only)
– '+' Output includes sign (numeric data only)
– ' ' Output includes leading-space for

positive values (numeric data only)
– '0' Output is zero-padded (numeric only)
– ',' Output uses group locale-specific group

separators (numeric data only)
– '(' Output surrounds negative numbers with

parentheses (numeric data only)

February 2010 Copyright @ 2010, John Jay King Page 46

System.out.format Example 1

• Here is an example of a numeric value being
formatted using System.out.format() --
System.out.printf() works identically:
double balance = 1234.56;
System.out.format("Balance is $%,6.2f",balance);

Output:
Balance is $1,234.56

February 2010 Copyright @ 2010, John Jay King Page 47

System.out.format Example 2

• Here is an example of a date being formatted
using System.out.format():

Date today = new Date();
System.out.format("\nToday is %TF %TT",

today,today);

Output:
Today is 2005-06-09 20:15:26

February 2010 Copyright @ 2010, John Jay King Page 48

• The Formatter class may also be used to format
String data anytime, the following example shows
the use of the Formatter object and locales:

Formatter myUSformat = new Formatter();
Formatter myFRformat = new Formatter();
String balUS =

myUSformat.format("Balance is $%,6.2f",
balance).toString();

String balFR = myFRformat.format(Locale.FRANCE,
"Balance is $%,6.2f",balance).toString();

System.out.println("US " + balUS);
System.out.println("FRANCE " + balFR);

Output:
US Balance is $1,234.56
FRANCE Balance is $1 234,56

Formatter Examples

February 2010 Copyright @ 2010, John Jay King Page 49

• Java 5/6's new variable argument lists (VarArgs)
allow specification of a method that can accept a
final parameter of the same time with the number of
values to be determined at runtime
– Only one variable argument list is allowed per

method
– Variable list must be the last argument defined for

the method
– The ellipsis "…" is used to indicate that an

argument might appear a variable number of times

Variable Argument Lists

February 2010 Copyright @ 2010, John Jay King Page 50

Variable Argument Example

• In the Auto class (below) the constructor is expects
a variable number of options for any automobile:

public Auto (String year, String make,
String model, String... options) { …)

• A variable argument list allow specification of
multiple cars with varying lists of options as shown
below; (String shown, any object type may be used)

Auto johnsToy = new Auto("1969","Fiat","124 Spider",
"5-speed", "disk brakes");

Auto myTruck = new Auto("1997","Ford","Expedition",
"Automatic","Four-wheel drive","power windows",
"power locks","air-conditioning",
"stereo with cd changer","tinted glass");

February 2010 Copyright @ 2010, John Jay King Page 51

Scanner Input

• Console input is not common in production
programs, but it is very useful when learning Java
or creating test modules

• Java programs commonly use use System.in and
its "readLine()" method to access the keyboard
(requiring that IOException be handled)

• Java 5 introduced the java.util.Scanner class
designed specifically to reduce the amount of
code needed to communicate with the keyboard

February 2010 Copyright @ 2010, John Jay King Page 52

Keyboard Input – Old Style

String firstName;
InputStreamReader inStream = new
InputStreamReader(System.in);
BufferedReader inBuf = new BufferedReader(inStream);
System.out.print("Please enter your first name => ");
try {

firstName = inBuf.readLine();
} // end of first try block
catch (IOException e) {

System.out.println("Problem reading first name");
return;

} // end catch block

February 2010 Copyright @ 2010, John Jay King Page 53

String lastName;
System.out.print("Please enter your last name => ");
Scanner fromkeyboard = new Scanner(System.in);
lastName = fromkeyboard.next();

Keyboard Input – New Style

February 2010 Copyright @ 2010, John Jay King Page 54

Scanner Object Methods

• next() returns the next input buffer String token
• next(comparePattern) or next(compareString)

uses patterns to return values
• Numeric variations include:

– nextBigDecimal()
– nextBigInteger()
– nextBoolean()
– nextByte()
– nextDouble()
– nextFloat()
– nextInt()
– nextLine()
– nextLong()
– nextShort()

February 2010 Copyright @ 2010, John Jay King Page 55

Synchronization

• Beginning with Java 5 (Java 1.5) the
java.util.concurrent.locks, java.util.concurrent,
and java.util.concurrent.atomic packages are
available providing better locking support than
provided by the "synchronized" modifier.

• All existing code still works as before
• The java.util.concurrent.xxx packages include

interfaces and classes used to simplify
synchronization and locking

February 2010 Copyright @ 2010, John Jay King Page 56

Java.util.concurrent.locks

• The java.util.concurrent.locks.Lock interface has
several methods including:
– lock() to obtain a lock (blocks if can’t get lock)
– unlock() to release a lock
– lockInterruptibility() gets lock, allows interruptions
– tryLock() attempts to obtain a lock without a wait.

• The java.util.concurrent.locks.ReentrantLock class
behaves like using synchronized does today

• The java.util.concurrent.locks.Condition interface
allows complex and multiple conditional waits

• The java.util.concurrent.locks.ReadWriteLock
interface allows separate read/write locks

February 2010 Copyright @ 2010, John Jay King Page 57

StringBuilder class

• New with Java 5, java.lang.StringBuilder class
provides a faster alternative to StringBuffer
– In most ways StringBuilder works exactly the

same as StringBuffer
– StringBuilder is faster than StringBuffer because

it is not ThreadSafe (multiple threads should not
access StringBuilder objects without
Synchronizing)

– Use StringBuilder when speed is important in a
single-thread environment and use StringBuffer if
multiple threads might require access.

February 2010 Copyright @ 2010, John Jay King Page 58

StringBuilder Example

String myString = "How";
StringBuilder myStrBldr = new StringBuilder("How");

myString += " now";
myString += " Brown";
myString += " Cow?";

myStrBldr.append(" now");
myStrBldr.append(" Brown");
myStrBldr.append(" Cow?");

System.out.println("String = " + myString);
System.out.println("StringBuilder = " + myStrBldr);

February 2010 Copyright @ 2010, John Jay King Page 59

Java SE Version 6

• Java SE 6 incorporates a broad range of
enhancements to the infrastructure of Java rather
than specific syntax enhancements
(unlike Java 5)

• Java SE 6 features include:
– XML and Web services support
– JDBC 4.0 support
– More Annotation types
– More flexible annotation processing
– Jave compiler APIs accessible from programs
– Application client GUI enhancements for both

AWT and Swing

February 2010 Copyright @ 2010, John Jay King Page 60

XML & Web Services Support

• Javas SE 6 address the growth of Web services
and XML processing in the Java community
including support for:
– Web Services client stack
– Streaming API for XML (StAX)
– Java Architecture for XML Binding (JAXB) 2.0
– Java API for XML-based Web services (JAX-

WS) 2.0 Web services metadata
– XML digital signature API

February 2010 Copyright @ 2010, John Jay King Page 61

New JDBC 4.0 Features

• Java SE 6 includes JDBC 4.0; designed to
improve ease of JDBC development by:
– Simplified access to relational data sources

with utility classes
– Use of generics and annotations
– Addition of JDBC 4.0 wrapper pattern
– Safe access to vendor-specific APIs
– Automatic driver discovery
– Enhanced connection management
– New data types

(including XML and SQL ROWID)

February 2010 Copyright @ 2010, John Jay King Page 62

Annotation-based Development

• Annotations were in Java 5.0 allowing developers
to embed metadata in Java source code

• Java SE 6 includes additional built-in annotation
types and annotation-processing APIs including:
– Web services metadata for the Java Platform

(JSR 181)
– Common Annotations for the Java Platform

(JSR 250)
– Pluggable Annotation Processing API

(JSR 269)

February 2010 Copyright @ 2010, John Jay King Page 63

Java Compiler APIs

• Java command-line compilers receive input from
the file system and report errors using a stream

• Java SE 6 allows the compiler to receive input
and/or send output to an abstraction of the file
system

• Java programs may now specify compiler
directives and process compiler output (this
feature was add mostly due to software vendor
requests)

February 2010 Copyright @ 2010, John Jay King Page 64

Application GUI Client APIs

• Java SE 6 enhances application GUI capabilities
with changes to both AWT and Swing

• AWT
– Faster splash screens (using native code)
– System tray support (icons & messages)
– Access to browsers and other desktop

application “helpers”
• Swing

– Improved drag-and-drop support
– Enhanced layout customization
– Simplified multi-thread programming
– Writing of GIF images

February 2010 Copyright @ 2010, John Jay King Page 65

Other Java SE 6 Features

• Changes to Java class file specification
(JSR 202)

• Framework to connect Java programs to
scripting-language interpreters (JSR 223)

• New bi-directional (allowing backward navigation)
collection classes

February 2010 Copyright @ 2010, John Jay King Page 66

Conclusion

• Java 5 provides many features to make the life of
developer richer allowing creation of better and
more interesting programs

• Generics and the new for loop are probably
exciting enough in their own right, but the other
features all work together to make this new
release the best Java ever

• Java 6 improves the programming environment,
especially for JDBC and AWT/Swing programs

February 2010 Copyright @ 2010, John Jay King Page 67

Save the Date: April 18-22 2010

Las Vegas, Nevada!

Collaborate 2010

February 2010 Copyright @ 2010, John Jay King Page 68

February 2010 Copyright @ 2010, John Jay King Page 69

Training Days 2011

Watch for the Dates!

February 2010 Copyright @ 2010, John Jay King Page 70

Java 6 and Java 5 New Features

To contact the author:

John King
King Training Resources
6341 South Williams Street
Littleton, CO 80121-2627 USA
1.800.252.0652 - 1.303.798.5727
Email: john@kingtraining.com

Today’s slides and examples are on the web:Today’s slides and examples are on the web:

http://www.kingtraining.com

Please Fill Out Session Evaluations

Thanks for your attention!

mailto:john@kingtraining.com
http://www.kingtraining.com/

	Java 6 and Java 5 New Features
	Session Objectives
	Who Am I?
	Introduction to Java 5 & 6
	Java 5 & 6 “In a nutshell”
	Numbering change
	JDK/SDK nomenclature
	Java Grows Over Time
	New Java Syntax
	Need for Generics
	Need for Generics: Example
	Generics to the Rescue!
	Generics Example
	Lint is not just in your navel!
	Java Lint Syntax
	Lint Warnings
	java.util.Arrays.toString()
	java.util.Arrays.deepToString()
	Other Additions to Arrays
	Enhanced “for” loop
	For-In Syntax
	Object to/from Primitive Issues
	Autoboxing and Unboxing
	Boxing
	UnBoxing
	Enum
	Using Enum, 1
	Using Enums, 2
	Static import
	Metadata via Annotations
	Annotation: Override
	Annotation: Deprecated
	Annotation: SupressWarnings
	Formatted Output
	Format Characters, 1
	Format Characters, 2
	Format Characters, 3
	Format Characters, 4
	Time Characters, 1
	Time Characters, 2
	Time Characters, 3
	Date Characters, 1
	Date Characters, 2
	Date/Time Characters
	Special Characters
	System.out.format Example 1
	System.out.format Example 2
	Formatter Examples
	Variable Argument Lists
	Variable Argument Example
	Scanner Input
	Keyboard Input – Old Style
	Keyboard Input – New Style
	Scanner Object Methods
	Synchronization
	Java.util.concurrent.locks
	StringBuilder class
	StringBuilder Example
	Java SE Version 6
	XML & Web Services Support
	New JDBC 4.0 Features
	Annotation-based Development
	Java Compiler APIs
	Application GUI Client APIs
	Other Java SE 6 Features
	Conclusion
	Training Days 2011

