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Session Objectives 

•  Learn new Oracle 11g features that are 
geared to developers 

•  Know how existing database features have 
been improved in Oracle 

•  Become aware of some DBA-oriented 
features that impact developers 
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Who Am I? 
•  John King – Partner, King Training Resources 
•  Providing training to Oracle and IT community for over  

20 years – http://www.kingtraining.com 
•  “Techie” who knows Oracle, SQL, Java, and PL/SQL  

pretty well (along with many other topics) 
•  Leader in Service Oriented Architecture (SOA) design  

and implementation 
•  Member of ODTUG (Oracle Development Tools User 

Group) Board of Directors 
•  Moved to Scottsdale, Arizona last year (we miss Colorado!) 
•  Active member of Rocky Mountain Oracle Users Group 

(RMOUG) 
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Oracle 11g R1 

•  Environment changes 
•  XML enhancements 
•  New/improved SQL statements 
•  New features in PL/SQL 
•  SQL & PL/SQL Results Caches 
•  Java, JDBC, and SQLJ improvements 
•  Pro* and OCI enhancements 
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Oracle 11g R2 

•  Results Cache Improvements 
•  New Analytic Functions 
•  XML Enhancements 
•  Java Enhancements 
•  Pro*C/Pro*COBOL Enhancements 
•  Edition-Based Redefinition (EBR) 
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Oracle 11g Preview 
•  iSqlPlus and SQLPLUSW gone 

(SQL*Plus & SQL Developer still there) 
•  Virtual Columns 
•  XML DB Binary XMLTYPE 
•  SQL Pivot/Unpivot 
•  REGEXP_COUNT 
•  PL/SQL compiler enhancement 
•  Assign sequence numbers in PL/SQL 
•  PL/SQL CONTINUE 
•  Trigger improvements 
•  New JDBC driver support Java 5 (1.5) & 6 
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Goodbye iSQL*Plus & sqlplusw 
•  Oracle11g does not include iSQL*Plus 
•  Oracle 11g does not include the windows version of 

SQL*Plus (sqlplusw.exe) 
•  Oracle 11g still includes SQL*Plus (command line) 
•  Oracle 11g fully supports Oracle SQL Developer 

(introduced in Oracle 10g) 
•  Oracle SQL Developer is Oracle’s suggested mechanism 

for SQL and PL/SQL development 
•  SQL*Plus has been enhanced to deal with BLOB, CLOB, 

and BFILE data more effectively 
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Binary XML 
•  Oracle continues its XML leadership in Oracle 11g 
•  Biggest change is the addition of a new “binary” XMLType 

–  “binary xml” is a third method for storing XML data in 
the database 

–  “structured” and “unstructured” XMLType still 
supported 

–  Oracle 11g’s XML processors includes a binary XML 
encoder, decoder, and token manager 

–  XML 1.0 text may be parsed via SAX events with or 
without a corresponding schema into “binary” XML form 

–  “binary” XMLType allows optimization of some XML 
applications by reducing memory and CPU expense 
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Next-Gen. LOB: Securefile 
•  Oracle 11g provides a new, more-secure, faster 

mechanism for storing Large Objects  
(e.g. XMLType data) 

•  LOB column specifications in CREATE TABLE or ALTER 
TABLE include STORE AS SECUREFILE 

•  SECUREFILE provides compression and encryption for 
Large OBjects (LOBs) 
–  Oracle 11g will detect duplicate LOB data and conserve 

space by only storing one copy  
("de-duplication" if SECUREFILE is specified). 

–  PL/SQL packages and OCI functions have been added 
to take advantage of SECUREFILE LOBs 

–  SECUREFILE lobs provide higher performance through 
reduced size and resource use. 
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XML Indexes 
•  Replaces CTXSYS.CTXXPATH indexes  
•  XML-specific index type, indexes document XML structure 
•  Designed to improve indexing unstructured and hybrid XML 
•  Determines XPath expressions for a document's XML tags 
•  Indexes singleton (scalar) nodes and items that occur 

multiple times 
•  XMLIndex record document child, descendant, and attribute 

axes (hierarchy) information 
•  XMLIndex is be design general (like CTXXPATH) rather 

than specific like B-tree indexes 
•  XMLIndex applies to all possible XPath targeting of a 

document 
•  XMLIndex may be used for XMLQuery, XMLTable, 

XMLExists, XMLCast, extract, extractValue, and existsNode 
•  XMLIndex helps anywhere in the query, not just in the 

WHERE clause 
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Creating XMLIndex 
•  The syntax to create an XMLIndex looks a little different 

from non-XML indexes; it is made up of three parts: 
–  Path index  Indexes XML tags and identifies 

   document fragments 
–  Order index  Indexes the hierarchy of nodes 
–  Value index  Values to match WHERE clauses 

   (may be exact match or range) 
•  XMLIndex uses a “Path Table” to store the various node 

paths in an XML document; if not specified in the 
CREATE INDEX statement Oracle will generate a name 
for you 
 
CREATE INDEX po_xmlindex_ix  
    ON po_clob (OBJECT_VALUE)  

 INDEXTYPE IS XDB.XMLIndex 
 PARAMETERS ('PATH TABLE my_path_table'); 
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Introducing Virtual Columns 
•  Beginning with Oracle 11g tables may now include virtual 

columns (dynamic values; not stored) 
•  Virtual columns obtain their value by evaluating an 

expression that might use:  
–  Columns from the same table 
–  Constants 
–  Function calls (user-defined functions or SQL functions) 

•  Virtual columns might be used to: 
–  Eliminate some views 
–  Control table partitioning (DBA stuff) 
–  Manage the new "binary" XMLType data 

•  Virtual columns may be indexed! 
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Creating Virtual Column 
CREATE TABLE NEWEMP 
       (EMPNO NUMBER(4) NOT NULL, 
        ENAME VARCHAR2(10), 
        JOB VARCHAR2(9), 
        MGR NUMBER(4), 
        HIREDATE DATE, 
        SAL NUMBER(7, 2), 
        COMM NUMBER(7, 2), 
        INCOME NUMBER(9,2)  
           GENERATED ALWAYS  
           AS (NVL("SAL",0)+NVL("COMM",0))  
     VIRTUAL, 

        DEPTNO NUMBER(2)); 

•  Datatype defaults if not specified (based upon expression) 
•  Expression result appears as data in table but is  
“generated always” (whether or not specified in table definition) 

•  “ VIRTUAL” is not required, but adds clarity 
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Adding Virtual Columns 

•  Oracle 11g also allows specification of Virtual Columns 
via ALTER TABLE 

 

 alter table myemp 
  add (totpay as  
       (nvl(sal,0)+nvl(comm,0))); 
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PIVOT/UNPIVOT 
•  Oracle joins other vendors by adding the PIVOT clause to 

the SELECT statement 
•  Adding a PIVOT clause to a SELECT allows rotation of 

rows into columns while performing aggregation to create 
cross-tabulation queries 

•  The PIVOT clause:  
–  Computes aggregations (implicit GROUP BY of all columns not in 

PIVOT clause) 
–  Output of all implicit grouping columns followed by new columns 

generated by PIVOT  
•  UNPIVOT performs the same activity but converts 

columns into ROWS (does not “undo” PIVOT) 
•  Clever developers have used PL/SQL and/or CASE to 

achieve PIVOT results before, but now it is part of 
Oracle's standard SQL 



16 Copyright @ 2012, John Jay King 

PIVOT Example 
select * from 
  (select job,deptno,income from newemp) query1 
    pivot (avg(income) 
    for deptno in (10 AS ACCOUNTING,  

       20 AS RESEARCH,  
       30 AS SALES)) 

    order by job; 
 
Job       ACCOUNTING RESEARCH    SALES 
ANALYST       30000   
CLERK         13000   9500     9500 
MANAGER    24500  29750    28500 
PRESIDENT       50000   
SALESMAN     19500 
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UNPIVOT Example 
select * from pivot_emp_table 
  unpivot include nulls 
    (avgpay for dept in (ACCOUNTING,RESEARCH,SALES)) 
  order by job; 
 
JOB          DEPT    AVGPAY 
ANALYST   ACCOUNTING   
ANALYST   RESEARCH   30000 
ANALYST   SALES  
   /*** more rows ***/ 
SALESMAN   ACCOUNTING   
SALESMAN   RESEARCH   
SALESMAN   SALES   19500 
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New SQL Functions 
•  New functions have also been added to Oracle 11g 

including: 
–  CUBE_TABLE  Extracts two-dimensional table  

    from a cube or dimension 
–  REGEXP_COUNT  Count occurrences of string 
–  XMLCAST   Cast XML data to SQL datatype 
–  XMLEXISTS   Determine if XQuery returns values 
–  XMLDIFF   Used to compare two XMLType  

    documents 
–  XMLPATCH   Used to patch an XMLType  

    document 
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Oracle 11g Read-Only Tables 
•  Beginning with Oracle 11g the database supports 

read-only table mode 
 
alter table myTable read only; 
 
alter table myTable read write; 
 

–  When a table is in read only mode INSERT, UPDATE, 
DELETE, and MERGE fail 

–  However, SELECT, CREATE INDEX, and other 
commands that do not alter data are allowed 
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Invisible Indexes 

•  Sometimes the optimizer selects the wrong index 
–  Beginning with Oracle 11g it is possible to make an 

index “invisible” to the optimizer 
–  Use ALTER TABLE to make it visible/invisible  

 
create index mytab_ix on mytab(mykey) invisible 
 
alter intex mytab_ix invisible; 
 
alter index mytab_ix visible; 
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Results Caching 

•  Caching is nothing new to Oracle;  
Oracle has cached data for a long time now 

•  What’s new is the caching of results… 
•  This is similar to how a Materialized View 

works but is more-dynamic 
•  New “result_cache” hint asks Oracle to 

cache query results 
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Result Cache – Test Query 
select cust_last_name || ', ' || cust_first_name cust_name 
      ,cust_city 
      ,prod_id 
      ,count(*) nbr_sales 
 from sh.customers cust 
    join sh.sales sales 
      on cust.cust_id = sales.cust_id 
 where country_id = 52789 
   and prod_id in (120,126) 
 group by cust_last_name,cust_first_name,cust_city,prod_id 
 having count(*) > 10 
 order by cust_name,nbr_sales; 
 

•  This query was run three times in succession with 
timing turned on; resulting timings were 
–  Elapsed: 00:00:00.67 
–  Elapsed: 00:00:00.46 
–  Elapsed: 00:00:00.37 



23 Copyright @ 2012, John Jay King 

Using Result Cache  
select /*+ result_cache */ cust_last_name || ', ' || cust_first_name 

cust_name 
      ,cust_city 
      ,prod_id 
      ,count(*) nbr_sales 
 from sh.customers cust 
    join sh.sales sales 
      on cust.cust_id = sales.cust_id 
 where country_id = 52789 
   and prod_id in (120,126) 
 group by cust_last_name,cust_first_name,cust_city,prod_id 
 having count(*) > 10 
 order by cust_name,nbr_sales; 
 

•  This query was run three times in succession with 
timing turned on; resulting timings were 
–  Elapsed: 00:00:00.23 
–  Elapsed: 00:00:00.01 
–  Elapsed: 00:00:00.03 
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PL/SQL Result Cache 
•  PL/SQL allows specification of a result_cache for 

function/procedure calls 
•  Add the clause “result_cache” just before the 
“AS/IS” keyword in the Function and/or 
Procedure definition 
(Oracle 11g R1 also used now-obsolete 
  “relies_on” clause) 

•  The results of a call to the Function or Procedure 
with a specific set of input parameters is stored 
for later re-use 
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PL/SQL Result Cache - Code 
CREATE OR REPLACE FUNCTION RESULT_CACHE_ON  

(in_cust_id sh.customers.cust_id%type,  in_prod_id 
sh.sales.prod_id%type) 

RETURN number  
RESULT_CACHE -- RELIES_ON (SH.CUSTOMERS, SH.SALES) 
authid definer 
AS 
 sales number(7,0); 
BEGIN 
select count(*) nbr_sales  into sales 
 from sh.customers cust join sh.sales sales 
      on cust.cust_id = sales.cust_id 
 where cust.cust_id = in_cust_id 
  and  prod_id = in_prod_id; 
 return sales; 
EXCEPTION 
  when no_data_found then return 0; 
END RESULT_CACHE_ON; 
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PL/SQL Result Cache - Timings 
 1* select result_cache_on(4977,120) from dual 
RESULT_CACHE_ON(4977,120) 
------------------------- 
                       14 
Elapsed: 00:00:00.40 
 
  1* select result_cache_on(4977,120) from dual 
RESULT_CACHE_ON(4977,120) 
------------------------- 
                       14 
Elapsed: 00:00:00.00 
 
  1* select result_cache_on(4977,120) from dual 
RESULT_CACHE_ON(4977,120) 
------------------------- 
                       14 
Elapsed: 00:00:00.01 



27 Copyright @ 2012, John Jay King 

PL/SQL Enhancements 
•  Oracle 11g’s changes to PL/SQL are very interesting to 

the developer: 
–  PL/SQL has been improved to include all of the 

XMLType, BLOB, Regular Expression, and other 
functionality added to SQL 

–  Improvements have been made to the compiler 
–  New PL/SQL data types 
–  Sequence number use is easier 
–  “continue” added for loop control 
–  CALL syntax has improved 
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•  In previous releases, the PL/SQL compiler required a 
standalone “C” compiler 

•  Oracle 11g now provides a native compiler for PL/SQL 
eliminating the need for a separate compiler 
ALTER PROCEDURE my_proc COMPILE 
PLSQL_CODE_TYPE=NATIVE REUSE SETTINGS;  

ALTER PROCEDURE my_proc COMPILE 
PLSQL_CODE_TYPE=INTERPRETED  
  REUSE SETTINGS;  

ALTER SESSION SET 
PLSQL_CODE_TYPE=NATIVE;  

ALTER SESSION SET  
PLSQL_CODE_TYPE=INTERPRETED; 

Compiler Enhancement 



29 Copyright @ 2012, John Jay King 

Compound Triggers 
•  Compound triggers allow the same code to be shared 

across timing points 
 
(previously accomplished using packages most of the 
time) 
 

•  Compound triggers have unique declaration and code 
sections for timing point 
 

•  All parts of a compound trigger share a common state that 
is initiated when the triggering statement starts and is 
destroyed when the triggering statement completes (even 
if an error occurs) 
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Compound Trigger Timing 

•  If multiple compound triggers exist for the 
same table; they fire together: 
– All before statement code fires first 
– All before row code fires next 
– All after row code fires next 
– All after statement code finishes 

•  The sequence of trigger execution can be 
controlled only using the FOLLOWS clause 
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Compound Trigger Syntax 

CREATE TRIGGER compound_trigger 
  FOR UPDATE OF sal ON emp 
    COMPOUND TRIGGER 
  -- Global Declaration Section 
  BEFORE STATEMENT IS 
  BEGIN … 
  BEFORE EACH ROW IS 
  BEGIN … 
  AFTER EACH ROW IS 
  BEGIN … 
END compound_trigger; 
/ 
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TRIGGER … FOLLOWS 
•  Oracle 11g adds the “FOLLOWS” clause to trigger 

creation allowing control over the sequence of execution 
when multiple triggers share a timing point 

•  FOLLOWS indicates the including trigger should happen 
after the named trigger(s); the named trigger(s) must 
already exist 

•  If some triggers use “FOLLOWS” and others do not; only 
the triggers using “FOLLOWS” are guaranteed to execute 
in a particular sequence 
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How FOLLOWS Works 
•  FOLLOWs only distinguishes between triggers at 

the same timing point: 
– BEFORE statement 
– BEFORE row 
– AFTER row  
– AFTER statement 
–  INSTEAD OF 

•  In the case of a compound trigger, FOLLOWS 
applies only to portions of triggers at the same 
timing point (e.g. if a BEFORE ROW simple 
trigger names a compound trigger with 
FOLLOWS the compound trigger must have a 
BEFORE ROW section and vice versa 
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FOLLOWS Syntax 
CREATE OR REPLACE TRIGGER myTrigger 
    BEFORE/AFTER/INSTEAD OF  someEvent 
    FOR EACH ROW 
    FOLLOWS someschema.otherTrigger  
    WHEN (condition=true) 
    /* trigger body */ 

•  FOLLOWS may specify a list (and designate sequence) 
FOLLOWS otherTrigger1, otherTrigger2, etc 
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New PL/SQL Datatypes 
•  Oracle 11g adds three new PL/SQL datatypes: 

Simple_integer, Simple_float, Simple_double 
–  The three new datatypes take advantage of native 

compilation features providing faster arithmetic via 
direct hardware implementation 

–  SIMPLE_INTEGER provides a binary integer that is 
neither checked for nulls nor overflows 

–  SIMPLE_INTEGER values may range from  
-2147483648 to 2147483647 and is always NOT NULL 

–  Likewise, SIMPLE_FLOAT and SIMPLE_DOUBLE 
provide floating point without null or overflow checks 
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Example SIMPLE_INTEGER 
declare 
--  mytestvar pls_integer := 2147483645; 
  mytestvar simple_integer := 2147483645; 
begin 
 loop 

     mytestvar := mytestvar + 1; 
     dbms_output.put_line('Value of mytestvar is now ' 

      || mytestvar); 
     exit when mytestvar < 10; 
  end loop; 
end; 
Results in: 
Value of mytestvar is now 2147483646 
Value of mytestvar is now 2147483647 
Value of mytestvar is now -2147483648 
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•  If the “mytestvar” variable is switched to PLS_INTEGER, an 
ORA-1426 NUMERIC OVERFLOW exception occurs 

 
 Error report: 
 ORA-01426: numeric overflow 
 ORA-06512: at line 7 
 01426. 00000 -  "numeric overflow" 
 *Cause:    Evaluation of an value expression causes 
an overflow/underflow. 
 *Action:   Reduce the operands. 
 Value of mytestvar is now 2147483646 
 Value of mytestvar is now 2147483647 

Without SIMPLE_INTEGER 
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Sequences in PL/SQL 
•  Sequence values NEXTVAL and CURRVAL may be use 

in PL/SQL assignment statement 

  myvar := myseq.nextval; 
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•  CONTINUE “iterates” a loop; branching over the rest of the 
code in the loop and returning to the loop control statement 
 
 begin 
   dbms_output.put_line('Counting down to blastoff!'); 
   for loopctr in reverse 1 .. ctr loop 
     if loopctr in (4,2) then 
         continue; 
     end if; 
     dbms_output.put_line(to_char(loopctr)); 
   end loop; 
   dbms_output.put_line('Blast Off!'); 
end; 
Counting down to blastoff! 
6  
5 
3 
1 
Blast Off!  

CONTINUE 

<-Values “4” and “2” do not appear in the output 
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•  REGEXP_COUNT counts the number of times a pattern 
occurs in a source string 
select ename,regexp_count(ename,'l',1,'i') from emp; 
SMITH  0 
ALLEN  2 
WARD  0 
JONES  0 
MARTIN  0 
BLAKE  1 
/** more rows ***/ 
MILLER  2 
 
–  string expression and/or column to match pattern 
–  Regular Expression pattern 
–  Beginning position in the source string (default=1) 
–  Match parameters (i = case insensitive, c = case sensitive, m = multiple 

line source delimited by ‘^’ or ‘$’, n = matches ‘.’ newline characters 
(default no), and x = ignore whitespace characters (default is to match) 
 

REGEXP_COUNT 
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•  PL/SQL allows function and procedure parameters to be 
specified in two ways; by position and by name 

•  With Oracle 11g SQL, parameter types may now be mixed 
•  Given the following function:  

CREATE OR REPLACE 
FUNCTION TEST_CALL (inval1 IN NUMBER, inval2 IN 
NUMBER, 
  inval3 IN NUMBER) RETURN NUMBER AS 

BEGIN 
  RETURN inval1 + inval2 + inval3; 
END TEST_CALL; 

•  The following calls all now work: 
test_call(vara,varb,varc) 
test_call(inval3=>varc,inval1=>vara,inval2=>varb) 
test_call(vara,inval3=>varc,inval2=>varb) 

CALL with Mixed Parameters 
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Non-PL/SQL Development 
•  Pro*C++ and Pro*COBOL improvements include: 

–  Supports DB2-style array INSERT and SELECT syntax 
–  Client-Side Query Cache 
–  Use Oracle's Outline to fix execution plans 

•  Oracle 11g Java Enhancements include: 
–  Java SE 5 (JDK 1.5) is new base level 
–  JIT enabled by default; automatic native compile 
–  JDBC 4.0 supported 

•  Microsoft .NET and Visual Studio .NET 2005 
–  PL/SQL Debugging in Visual Studio .NET 2005 
–  Designer and integration using Data Windows via 

Visual Studio .NET 2005 DDEX  
–  Oracle Data Provider for .NET (ODP.NET) 

•  PHP Enhancements 
–  Zend Technologies collaboration; Zend Core for Oracle 

may be downloaded from OTN 
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New Analytics (11gR2) 

•  Oracle 11gR2 has improved upon the 
already-impressive analytic functions first 
introduced in Oracle 8i adding: 
– LISTAGG 
– NTH_VALUE 
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LISTAGG (11gR2) 
•  LISTAGG provides lists of lower-level columns 

after aggregation 
 
select department_id, 
       listagg(last_name, ', ') 
       within group 
       (order by last_name) dept_employees 
       from hr.employees 
       where department_id in (20,30) 
       group by department_id 
       order by department_id; 

 
 DEPARTMENT_ID  DEPT_EMPLOYEES 

    -------------  ----------------------------------------- 
       
               20  Fay, Hartstein 
        
               30  Baida, Colmenares, Himuro, Khoo,  
                   Raphaely, Tobias 
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NTH_VALUE (11gR2) 
•  NTH_VALUE simplifies the process of retrieving 

the “n-th” value 
 
select distinct department_id 
    ,first_value(salary)  ignore nulls   

   over (partition by department_id order by salary desc 
   rows between unbounded preceding and unbounded following) 
  "1st" 

    ,nth_value(salary,2) ignore nulls  
   over (partition by department_id  order by salary desc 
   rows between unbounded preceding and unbounded following)  
  "2nd" 

    ,nth_value(salary,3) ignore nulls  
   over (partition by department_id  order by salary desc 
   rows between unbounded preceding and unbounded following)  
  "3rd" 

    from hr.employees 
    where department_id = 80 
    order by department_id, "1st", "2nd", "3rd"; 
 
DEPARTMENT_ID        1st        2nd        3rd 
------------- ---------- ---------- ---------- 
           80      14000      13500      12000 
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Recursive Subquery 
•  Oracle’s CONNECT BY has allowed definition of 

a hierarchical relationship for years; now an ISO-
standard option is available:   

 

with empConnect(last_name,employee_id,manager_id,lvl) 
     as (select last_name, employee_id, manager_id, 1 lvl2  

  from hr.employees where manager_id is null 
        union all 
         select emp.last_name, emp.employee_id,  

  emp.manager_id, ec.lvl+1 
          from hr.employees emp, empConnect ec 
         where emp.manager_id = ec.employee_id) 
     SEARCH DEPTH FIRST BY last_name SET order_by 
select lvl,lpad(' ' ,3*lvl, ' ')||last_name empname 
    from empConnect 
    order by order_by  
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External Directory Features 

•  With Oracle 11gR2 the EXECUTE privilege 
may be granted for Directory objects; 
allowing execution of code stored in host 
operating system files 

•  Pre-processing programs may be specified 
for External files used via Oracle Loader 
(perhaps to unzip, decrypt, translate,…) 
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Data Pump “Legacy Mode” 

•  Oracle 11gR2 has provided “legacy mode” 
for Oracle Data Pump  

•  Allows execution of existing Import/Export 
scripts  

•  When Data Pump recognizes Import/Export 
parameters it automatically switches to 
“legacy mode” and executes as desired 
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11gR2 Java Enhancements 

•  Oracle’s Java Virtual Machine (JVM), Java 
debugger, and JDBC library have been 
enhanced to include IPv6 compatability 

•  Java API for Oracle Georaster datatype 
•  Note: The JDBC driver package is now 

oracle.jdbc; oracle.jdbc.driver package has 
been deprecated 
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11gR2 XML Enhancements 
•  Binary XML has been enhanced with significant 

performance improvements 
•  Default XMLType storage is now Binary using 

SecureFile (used to be Unstructured) 
•  Unstructured XMLType is “deprecated” 
•  XMLIndex improved allowing indexing for all 

XMLTypes and for fragments via XPath and 
partitioning 

•  Partitioning now allowed for XMLType data 
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Edition-Based Redefinition (EBR) 

•  The quest to eliminate downtime has led to a 
desire to provide "Online Application Upgrade" 
where an application need not be taken down 
when upgrades are applied 
– Users of the existing system continue 

uninterrupted 
– Users of the upgraded system use new code 

immediately 
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How? 
•  Oracle 11gR2 Edition-Based Redefinition adds a 

new non-schema "edition" of an application 
including all of the original edition's PL/SQL, 
views, and synonyms; the new edition may be 
modified as desired then tested and deployed 
without impacting the users of the original edition 

•  Once the new edition is ready for complete rollout 
it may be released 

•  This is accomplished by a combination of: 
– Editioning Views   

 Showing the data "as of" a specific edition 
– Cross-Edition Triggers   

 Triggers keeping "old" and "new" editions 
 synchronized 
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More Information on EBR 

•  Edition-Based Redefinition is one of the  
most-exciting aspects of Oracle 11g R2 to get 
more information on this amazing new feature see: 
–  White Paper on OTN: 

http://www.oracle.com/technology/deploy 
 /availability/pdf/edition_based_redefinition.pdf 

–  Tutorial on OTN: 
http://www.oracle.com/technology/obe 
 /11gr2_db_prod/appdev/ebr/ebr_otn.htm 

–  Bryn Llewellyn interview on Oracle Development Tools 
User Group (ODTUG) website 
http://www.odtug.com 
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Wrapping it all Up 

•  Oracle 11g adds significant new functionality to the 
already robust database environment 

•  With the production release of Oracle 11g R2 it’s 
probably time for organizations to really get serious 
about moving off of earlier releases 

•  While an emphasis is sometimes placed on the features 
of Oracle that support the Data Base Administrator, this 
paper shows many Developer-oriented features of great 
usefulness 
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Training Days 2013 

Watch for the Date! 

http://www.rmoug.org 
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Save the Date: April 22-26, 2012 
 

Mandalay Bay Convention Center – Las Vegas, Nevada! 

Collaborate 2012 
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Oracle 11g for Developers:  
    What You Need to Know 
 
 
To contact the author: 
John King 
King Training Resources 
P. O. Box 1780 
Scottsdale, AZ  85252   USA 
1.800.252.0652 - 1.303.798.5727 
Email: john@kingtraining.com 

Today’s slides and examples are on the web: 

http://www.kingtraining.com 

Please Fill Out Session Evaluations 

Thanks for your attention! 


