
1 Copyright @ 2012, John Jay King

Presented by: John Jay King
King Training Resources - john@kingtraining.com

Download this paper from: http://www.kingtraining.com

Oracle 11g for Developers:
What You Need to Know

2 Copyright @ 2012, John Jay King

Session Objectives

•  Learn new Oracle 11g features that are
geared to developers

•  Know how existing database features have
been improved in Oracle

•  Become aware of some DBA-oriented
features that impact developers

3 Copyright @ 2012, John Jay King

Who Am I?
•  John King – Partner, King Training Resources
•  Providing training to Oracle and IT community for over

20 years – http://www.kingtraining.com
•  “Techie” who knows Oracle, SQL, Java, and PL/SQL

pretty well (along with many other topics)
•  Leader in Service Oriented Architecture (SOA) design

and implementation
•  Member of ODTUG (Oracle Development Tools User

Group) Board of Directors
•  Moved to Scottsdale, Arizona last year (we miss Colorado!)
•  Active member of Rocky Mountain Oracle Users Group

(RMOUG)

4 Copyright @ 2012, John Jay King

Oracle 11g R1

•  Environment changes
•  XML enhancements
•  New/improved SQL statements
•  New features in PL/SQL
•  SQL & PL/SQL Results Caches
•  Java, JDBC, and SQLJ improvements
•  Pro* and OCI enhancements

5 Copyright @ 2012, John Jay King

Oracle 11g R2

•  Results Cache Improvements
•  New Analytic Functions
•  XML Enhancements
•  Java Enhancements
•  Pro*C/Pro*COBOL Enhancements
•  Edition-Based Redefinition (EBR)

6 Copyright @ 2012, John Jay King

Oracle 11g Preview
•  iSqlPlus and SQLPLUSW gone

(SQL*Plus & SQL Developer still there)
•  Virtual Columns
•  XML DB Binary XMLTYPE
•  SQL Pivot/Unpivot
•  REGEXP_COUNT
•  PL/SQL compiler enhancement
•  Assign sequence numbers in PL/SQL
•  PL/SQL CONTINUE
•  Trigger improvements
•  New JDBC driver support Java 5 (1.5) & 6

7 Copyright @ 2012, John Jay King

Goodbye iSQL*Plus & sqlplusw
•  Oracle11g does not include iSQL*Plus
•  Oracle 11g does not include the windows version of

SQL*Plus (sqlplusw.exe)
•  Oracle 11g still includes SQL*Plus (command line)
•  Oracle 11g fully supports Oracle SQL Developer

(introduced in Oracle 10g)
•  Oracle SQL Developer is Oracle’s suggested mechanism

for SQL and PL/SQL development
•  SQL*Plus has been enhanced to deal with BLOB, CLOB,

and BFILE data more effectively

8 Copyright @ 2012, John Jay King

Binary XML
•  Oracle continues its XML leadership in Oracle 11g
•  Biggest change is the addition of a new “binary” XMLType

–  “binary xml” is a third method for storing XML data in
the database

–  “structured” and “unstructured” XMLType still
supported

–  Oracle 11g’s XML processors includes a binary XML
encoder, decoder, and token manager

–  XML 1.0 text may be parsed via SAX events with or
without a corresponding schema into “binary” XML form

–  “binary” XMLType allows optimization of some XML
applications by reducing memory and CPU expense

9 Copyright @ 2012, John Jay King

Next-Gen. LOB: Securefile
•  Oracle 11g provides a new, more-secure, faster

mechanism for storing Large Objects
(e.g. XMLType data)

•  LOB column specifications in CREATE TABLE or ALTER
TABLE include STORE AS SECUREFILE

•  SECUREFILE provides compression and encryption for
Large OBjects (LOBs)
–  Oracle 11g will detect duplicate LOB data and conserve

space by only storing one copy
("de-duplication" if SECUREFILE is specified).

–  PL/SQL packages and OCI functions have been added
to take advantage of SECUREFILE LOBs

–  SECUREFILE lobs provide higher performance through
reduced size and resource use.

10 Copyright @ 2012, John Jay King

XML Indexes
•  Replaces CTXSYS.CTXXPATH indexes
•  XML-specific index type, indexes document XML structure
•  Designed to improve indexing unstructured and hybrid XML
•  Determines XPath expressions for a document's XML tags
•  Indexes singleton (scalar) nodes and items that occur

multiple times
•  XMLIndex record document child, descendant, and attribute

axes (hierarchy) information
•  XMLIndex is be design general (like CTXXPATH) rather

than specific like B-tree indexes
•  XMLIndex applies to all possible XPath targeting of a

document
•  XMLIndex may be used for XMLQuery, XMLTable,

XMLExists, XMLCast, extract, extractValue, and existsNode
•  XMLIndex helps anywhere in the query, not just in the

WHERE clause

11 Copyright @ 2012, John Jay King

Creating XMLIndex
•  The syntax to create an XMLIndex looks a little different

from non-XML indexes; it is made up of three parts:
–  Path index Indexes XML tags and identifies

 document fragments
–  Order index Indexes the hierarchy of nodes
–  Value index Values to match WHERE clauses

 (may be exact match or range)
•  XMLIndex uses a “Path Table” to store the various node

paths in an XML document; if not specified in the
CREATE INDEX statement Oracle will generate a name
for you

CREATE INDEX po_xmlindex_ix
 ON po_clob (OBJECT_VALUE)

 INDEXTYPE IS XDB.XMLIndex
 PARAMETERS ('PATH TABLE my_path_table');

12 Copyright @ 2012, John Jay King

Introducing Virtual Columns
•  Beginning with Oracle 11g tables may now include virtual

columns (dynamic values; not stored)
•  Virtual columns obtain their value by evaluating an

expression that might use:
–  Columns from the same table
–  Constants
–  Function calls (user-defined functions or SQL functions)

•  Virtual columns might be used to:
–  Eliminate some views
–  Control table partitioning (DBA stuff)
–  Manage the new "binary" XMLType data

•  Virtual columns may be indexed!

13 Copyright @ 2012, John Jay King

Creating Virtual Column
CREATE TABLE NEWEMP
 (EMPNO NUMBER(4) NOT NULL,
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7, 2),
 COMM NUMBER(7, 2),
 INCOME NUMBER(9,2)
 GENERATED ALWAYS
 AS (NVL("SAL",0)+NVL("COMM",0))
 VIRTUAL,

 DEPTNO NUMBER(2));

•  Datatype defaults if not specified (based upon expression)
•  Expression result appears as data in table but is
“generated always” (whether or not specified in table definition)

•  “ VIRTUAL” is not required, but adds clarity

14 Copyright @ 2012, John Jay King

Adding Virtual Columns

•  Oracle 11g also allows specification of Virtual Columns
via ALTER TABLE

 alter table myemp
 add (totpay as
 (nvl(sal,0)+nvl(comm,0)));

15 Copyright @ 2012, John Jay King

PIVOT/UNPIVOT
•  Oracle joins other vendors by adding the PIVOT clause to

the SELECT statement
•  Adding a PIVOT clause to a SELECT allows rotation of

rows into columns while performing aggregation to create
cross-tabulation queries

•  The PIVOT clause:
–  Computes aggregations (implicit GROUP BY of all columns not in

PIVOT clause)
–  Output of all implicit grouping columns followed by new columns

generated by PIVOT
•  UNPIVOT performs the same activity but converts

columns into ROWS (does not “undo” PIVOT)
•  Clever developers have used PL/SQL and/or CASE to

achieve PIVOT results before, but now it is part of
Oracle's standard SQL

16 Copyright @ 2012, John Jay King

PIVOT Example
select * from
 (select job,deptno,income from newemp) query1
 pivot (avg(income)
 for deptno in (10 AS ACCOUNTING,

 20 AS RESEARCH,
 30 AS SALES))

 order by job;

Job ACCOUNTING RESEARCH SALES
ANALYST 30000
CLERK 13000 9500 9500
MANAGER 24500 29750 28500
PRESIDENT 50000
SALESMAN 19500

17 Copyright @ 2012, John Jay King

UNPIVOT Example
select * from pivot_emp_table
 unpivot include nulls
 (avgpay for dept in (ACCOUNTING,RESEARCH,SALES))
 order by job;

JOB DEPT AVGPAY
ANALYST ACCOUNTING
ANALYST RESEARCH 30000
ANALYST SALES
 /*** more rows ***/
SALESMAN ACCOUNTING
SALESMAN RESEARCH
SALESMAN SALES 19500

18 Copyright @ 2012, John Jay King

New SQL Functions
•  New functions have also been added to Oracle 11g

including:
–  CUBE_TABLE Extracts two-dimensional table

 from a cube or dimension
–  REGEXP_COUNT Count occurrences of string
–  XMLCAST Cast XML data to SQL datatype
–  XMLEXISTS Determine if XQuery returns values
–  XMLDIFF Used to compare two XMLType

 documents
–  XMLPATCH Used to patch an XMLType

 document

19 Copyright @ 2012, John Jay King

Oracle 11g Read-Only Tables
•  Beginning with Oracle 11g the database supports

read-only table mode

alter table myTable read only;

alter table myTable read write;

–  When a table is in read only mode INSERT, UPDATE,
DELETE, and MERGE fail

–  However, SELECT, CREATE INDEX, and other
commands that do not alter data are allowed

20 Copyright @ 2012, John Jay King

Invisible Indexes

•  Sometimes the optimizer selects the wrong index
–  Beginning with Oracle 11g it is possible to make an

index “invisible” to the optimizer
–  Use ALTER TABLE to make it visible/invisible

create index mytab_ix on mytab(mykey) invisible

alter intex mytab_ix invisible;

alter index mytab_ix visible;

21 Copyright @ 2012, John Jay King

Results Caching

•  Caching is nothing new to Oracle;
Oracle has cached data for a long time now

•  What’s new is the caching of results…
•  This is similar to how a Materialized View

works but is more-dynamic
•  New “result_cache” hint asks Oracle to

cache query results

22 Copyright @ 2012, John Jay King

Result Cache – Test Query
select cust_last_name || ', ' || cust_first_name cust_name
 ,cust_city
 ,prod_id
 ,count(*) nbr_sales
 from sh.customers cust
 join sh.sales sales
 on cust.cust_id = sales.cust_id
 where country_id = 52789
 and prod_id in (120,126)
 group by cust_last_name,cust_first_name,cust_city,prod_id
 having count(*) > 10
 order by cust_name,nbr_sales;

•  This query was run three times in succession with
timing turned on; resulting timings were
–  Elapsed: 00:00:00.67
–  Elapsed: 00:00:00.46
–  Elapsed: 00:00:00.37

23 Copyright @ 2012, John Jay King

Using Result Cache
select /*+ result_cache */ cust_last_name || ', ' || cust_first_name

cust_name
 ,cust_city
 ,prod_id
 ,count(*) nbr_sales
 from sh.customers cust
 join sh.sales sales
 on cust.cust_id = sales.cust_id
 where country_id = 52789
 and prod_id in (120,126)
 group by cust_last_name,cust_first_name,cust_city,prod_id
 having count(*) > 10
 order by cust_name,nbr_sales;

•  This query was run three times in succession with
timing turned on; resulting timings were
–  Elapsed: 00:00:00.23
–  Elapsed: 00:00:00.01
–  Elapsed: 00:00:00.03

24 Copyright @ 2012, John Jay King

PL/SQL Result Cache
•  PL/SQL allows specification of a result_cache for

function/procedure calls
•  Add the clause “result_cache” just before the
“AS/IS” keyword in the Function and/or
Procedure definition
(Oracle 11g R1 also used now-obsolete
 “relies_on” clause)

•  The results of a call to the Function or Procedure
with a specific set of input parameters is stored
for later re-use

25 Copyright @ 2012, John Jay King

PL/SQL Result Cache - Code
CREATE OR REPLACE FUNCTION RESULT_CACHE_ON

(in_cust_id sh.customers.cust_id%type, in_prod_id
sh.sales.prod_id%type)

RETURN number
RESULT_CACHE -- RELIES_ON (SH.CUSTOMERS, SH.SALES)
authid definer
AS
 sales number(7,0);
BEGIN
select count(*) nbr_sales into sales
 from sh.customers cust join sh.sales sales
 on cust.cust_id = sales.cust_id
 where cust.cust_id = in_cust_id
 and prod_id = in_prod_id;
 return sales;
EXCEPTION
 when no_data_found then return 0;
END RESULT_CACHE_ON;

26 Copyright @ 2012, John Jay King

PL/SQL Result Cache - Timings
 1* select result_cache_on(4977,120) from dual
RESULT_CACHE_ON(4977,120)

 14
Elapsed: 00:00:00.40

 1* select result_cache_on(4977,120) from dual
RESULT_CACHE_ON(4977,120)

 14
Elapsed: 00:00:00.00

 1* select result_cache_on(4977,120) from dual
RESULT_CACHE_ON(4977,120)

 14
Elapsed: 00:00:00.01

27 Copyright @ 2012, John Jay King

PL/SQL Enhancements
•  Oracle 11g’s changes to PL/SQL are very interesting to

the developer:
–  PL/SQL has been improved to include all of the

XMLType, BLOB, Regular Expression, and other
functionality added to SQL

–  Improvements have been made to the compiler
–  New PL/SQL data types
–  Sequence number use is easier
–  “continue” added for loop control
–  CALL syntax has improved

28 Copyright @ 2012, John Jay King

•  In previous releases, the PL/SQL compiler required a
standalone “C” compiler

•  Oracle 11g now provides a native compiler for PL/SQL
eliminating the need for a separate compiler
ALTER PROCEDURE my_proc COMPILE
PLSQL_CODE_TYPE=NATIVE REUSE SETTINGS;

ALTER PROCEDURE my_proc COMPILE
PLSQL_CODE_TYPE=INTERPRETED
 REUSE SETTINGS;

ALTER SESSION SET
PLSQL_CODE_TYPE=NATIVE;

ALTER SESSION SET
PLSQL_CODE_TYPE=INTERPRETED;

Compiler Enhancement

29 Copyright @ 2012, John Jay King

Compound Triggers
•  Compound triggers allow the same code to be shared

across timing points

(previously accomplished using packages most of the
time)

•  Compound triggers have unique declaration and code
sections for timing point

•  All parts of a compound trigger share a common state that
is initiated when the triggering statement starts and is
destroyed when the triggering statement completes (even
if an error occurs)

30 Copyright @ 2012, John Jay King

Compound Trigger Timing

•  If multiple compound triggers exist for the
same table; they fire together:
– All before statement code fires first
– All before row code fires next
– All after row code fires next
– All after statement code finishes

•  The sequence of trigger execution can be
controlled only using the FOLLOWS clause

31 Copyright @ 2012, John Jay King

Compound Trigger Syntax

CREATE TRIGGER compound_trigger
 FOR UPDATE OF sal ON emp
 COMPOUND TRIGGER
 -- Global Declaration Section
 BEFORE STATEMENT IS
 BEGIN …
 BEFORE EACH ROW IS
 BEGIN …
 AFTER EACH ROW IS
 BEGIN …
END compound_trigger;
/

32 Copyright @ 2012, John Jay King

TRIGGER … FOLLOWS
•  Oracle 11g adds the “FOLLOWS” clause to trigger

creation allowing control over the sequence of execution
when multiple triggers share a timing point

•  FOLLOWS indicates the including trigger should happen
after the named trigger(s); the named trigger(s) must
already exist

•  If some triggers use “FOLLOWS” and others do not; only
the triggers using “FOLLOWS” are guaranteed to execute
in a particular sequence

33 Copyright @ 2012, John Jay King

How FOLLOWS Works
•  FOLLOWs only distinguishes between triggers at

the same timing point:
– BEFORE statement
– BEFORE row
– AFTER row
– AFTER statement
–  INSTEAD OF

•  In the case of a compound trigger, FOLLOWS
applies only to portions of triggers at the same
timing point (e.g. if a BEFORE ROW simple
trigger names a compound trigger with
FOLLOWS the compound trigger must have a
BEFORE ROW section and vice versa

34 Copyright @ 2012, John Jay King

FOLLOWS Syntax
CREATE OR REPLACE TRIGGER myTrigger
 BEFORE/AFTER/INSTEAD OF someEvent
 FOR EACH ROW
 FOLLOWS someschema.otherTrigger
 WHEN (condition=true)
 /* trigger body */

•  FOLLOWS may specify a list (and designate sequence)
FOLLOWS otherTrigger1, otherTrigger2, etc

35 Copyright @ 2012, John Jay King

New PL/SQL Datatypes
•  Oracle 11g adds three new PL/SQL datatypes:

Simple_integer, Simple_float, Simple_double
–  The three new datatypes take advantage of native

compilation features providing faster arithmetic via
direct hardware implementation

–  SIMPLE_INTEGER provides a binary integer that is
neither checked for nulls nor overflows

–  SIMPLE_INTEGER values may range from
-2147483648 to 2147483647 and is always NOT NULL

–  Likewise, SIMPLE_FLOAT and SIMPLE_DOUBLE
provide floating point without null or overflow checks

36 Copyright @ 2012, John Jay King

Example SIMPLE_INTEGER
declare
-- mytestvar pls_integer := 2147483645;
 mytestvar simple_integer := 2147483645;
begin
 loop

 mytestvar := mytestvar + 1;
 dbms_output.put_line('Value of mytestvar is now '

 || mytestvar);
 exit when mytestvar < 10;
 end loop;
end;
Results in:
Value of mytestvar is now 2147483646
Value of mytestvar is now 2147483647
Value of mytestvar is now -2147483648

37 Copyright @ 2012, John Jay King

•  If the “mytestvar” variable is switched to PLS_INTEGER, an
ORA-1426 NUMERIC OVERFLOW exception occurs

 Error report:
 ORA-01426: numeric overflow
 ORA-06512: at line 7
 01426. 00000 - "numeric overflow"
 *Cause: Evaluation of an value expression causes
an overflow/underflow.
 *Action: Reduce the operands.
 Value of mytestvar is now 2147483646
 Value of mytestvar is now 2147483647

Without SIMPLE_INTEGER

38 Copyright @ 2012, John Jay King

Sequences in PL/SQL
•  Sequence values NEXTVAL and CURRVAL may be use

in PL/SQL assignment statement

 myvar := myseq.nextval;

39 Copyright @ 2012, John Jay King

•  CONTINUE “iterates” a loop; branching over the rest of the
code in the loop and returning to the loop control statement

 begin
 dbms_output.put_line('Counting down to blastoff!');
 for loopctr in reverse 1 .. ctr loop
 if loopctr in (4,2) then
 continue;
 end if;
 dbms_output.put_line(to_char(loopctr));
 end loop;
 dbms_output.put_line('Blast Off!');
end;
Counting down to blastoff!
6
5
3
1
Blast Off!

CONTINUE

<-Values “4” and “2” do not appear in the output

40 Copyright @ 2012, John Jay King

•  REGEXP_COUNT counts the number of times a pattern
occurs in a source string
select ename,regexp_count(ename,'l',1,'i') from emp;
SMITH 0
ALLEN 2
WARD 0
JONES 0
MARTIN 0
BLAKE 1
/** more rows ***/
MILLER 2

–  string expression and/or column to match pattern
–  Regular Expression pattern
–  Beginning position in the source string (default=1)
–  Match parameters (i = case insensitive, c = case sensitive, m = multiple

line source delimited by ‘^’ or ‘$’, n = matches ‘.’ newline characters
(default no), and x = ignore whitespace characters (default is to match)

REGEXP_COUNT

41 Copyright @ 2012, John Jay King

•  PL/SQL allows function and procedure parameters to be
specified in two ways; by position and by name

•  With Oracle 11g SQL, parameter types may now be mixed
•  Given the following function:

CREATE OR REPLACE
FUNCTION TEST_CALL (inval1 IN NUMBER, inval2 IN
NUMBER,
 inval3 IN NUMBER) RETURN NUMBER AS

BEGIN
 RETURN inval1 + inval2 + inval3;
END TEST_CALL;

•  The following calls all now work:
test_call(vara,varb,varc)
test_call(inval3=>varc,inval1=>vara,inval2=>varb)
test_call(vara,inval3=>varc,inval2=>varb)

CALL with Mixed Parameters

42 Copyright @ 2012, John Jay King

Non-PL/SQL Development
•  Pro*C++ and Pro*COBOL improvements include:

–  Supports DB2-style array INSERT and SELECT syntax
–  Client-Side Query Cache
–  Use Oracle's Outline to fix execution plans

•  Oracle 11g Java Enhancements include:
–  Java SE 5 (JDK 1.5) is new base level
–  JIT enabled by default; automatic native compile
–  JDBC 4.0 supported

•  Microsoft .NET and Visual Studio .NET 2005
–  PL/SQL Debugging in Visual Studio .NET 2005
–  Designer and integration using Data Windows via

Visual Studio .NET 2005 DDEX
–  Oracle Data Provider for .NET (ODP.NET)

•  PHP Enhancements
–  Zend Technologies collaboration; Zend Core for Oracle

may be downloaded from OTN

43 Copyright @ 2012, John Jay King

New Analytics (11gR2)

•  Oracle 11gR2 has improved upon the
already-impressive analytic functions first
introduced in Oracle 8i adding:
– LISTAGG
– NTH_VALUE

44 Copyright @ 2012, John Jay King

LISTAGG (11gR2)
•  LISTAGG provides lists of lower-level columns

after aggregation

select department_id,
 listagg(last_name, ', ')
 within group
 (order by last_name) dept_employees
 from hr.employees
 where department_id in (20,30)
 group by department_id
 order by department_id;

 DEPARTMENT_ID DEPT_EMPLOYEES

 ------------- ---

 20 Fay, Hartstein

 30 Baida, Colmenares, Himuro, Khoo,
 Raphaely, Tobias

45 Copyright @ 2012, John Jay King

NTH_VALUE (11gR2)
•  NTH_VALUE simplifies the process of retrieving

the “n-th” value

select distinct department_id
 ,first_value(salary) ignore nulls

 over (partition by department_id order by salary desc
 rows between unbounded preceding and unbounded following)
 "1st"

 ,nth_value(salary,2) ignore nulls
 over (partition by department_id order by salary desc
 rows between unbounded preceding and unbounded following)
 "2nd"

 ,nth_value(salary,3) ignore nulls
 over (partition by department_id order by salary desc
 rows between unbounded preceding and unbounded following)
 "3rd"

 from hr.employees
 where department_id = 80
 order by department_id, "1st", "2nd", "3rd";

DEPARTMENT_ID 1st 2nd 3rd
------------- ---------- ---------- ----------
 80 14000 13500 12000

46 Copyright @ 2012, John Jay King

Recursive Subquery
•  Oracle’s CONNECT BY has allowed definition of

a hierarchical relationship for years; now an ISO-
standard option is available:

with empConnect(last_name,employee_id,manager_id,lvl)
 as (select last_name, employee_id, manager_id, 1 lvl2

 from hr.employees where manager_id is null
 union all
 select emp.last_name, emp.employee_id,

 emp.manager_id, ec.lvl+1
 from hr.employees emp, empConnect ec
 where emp.manager_id = ec.employee_id)
 SEARCH DEPTH FIRST BY last_name SET order_by
select lvl,lpad(' ' ,3*lvl, ' ')||last_name empname
 from empConnect
 order by order_by

47 Copyright @ 2012, John Jay King

External Directory Features

•  With Oracle 11gR2 the EXECUTE privilege
may be granted for Directory objects;
allowing execution of code stored in host
operating system files

•  Pre-processing programs may be specified
for External files used via Oracle Loader
(perhaps to unzip, decrypt, translate,…)

48 Copyright @ 2012, John Jay King

Data Pump “Legacy Mode”

•  Oracle 11gR2 has provided “legacy mode”
for Oracle Data Pump

•  Allows execution of existing Import/Export
scripts

•  When Data Pump recognizes Import/Export
parameters it automatically switches to
“legacy mode” and executes as desired

49 Copyright @ 2012, John Jay King

11gR2 Java Enhancements

•  Oracle’s Java Virtual Machine (JVM), Java
debugger, and JDBC library have been
enhanced to include IPv6 compatability

•  Java API for Oracle Georaster datatype
•  Note: The JDBC driver package is now

oracle.jdbc; oracle.jdbc.driver package has
been deprecated

50 Copyright @ 2012, John Jay King

11gR2 XML Enhancements
•  Binary XML has been enhanced with significant

performance improvements
•  Default XMLType storage is now Binary using

SecureFile (used to be Unstructured)
•  Unstructured XMLType is “deprecated”
•  XMLIndex improved allowing indexing for all

XMLTypes and for fragments via XPath and
partitioning

•  Partitioning now allowed for XMLType data

51 Copyright @ 2012, John Jay King

Edition-Based Redefinition (EBR)

•  The quest to eliminate downtime has led to a
desire to provide "Online Application Upgrade"
where an application need not be taken down
when upgrades are applied
– Users of the existing system continue

uninterrupted
– Users of the upgraded system use new code

immediately

52 Copyright @ 2012, John Jay King

How?
•  Oracle 11gR2 Edition-Based Redefinition adds a

new non-schema "edition" of an application
including all of the original edition's PL/SQL,
views, and synonyms; the new edition may be
modified as desired then tested and deployed
without impacting the users of the original edition

•  Once the new edition is ready for complete rollout
it may be released

•  This is accomplished by a combination of:
– Editioning Views

 Showing the data "as of" a specific edition
– Cross-Edition Triggers

 Triggers keeping "old" and "new" editions
 synchronized

53 Copyright @ 2012, John Jay King

More Information on EBR

•  Edition-Based Redefinition is one of the
most-exciting aspects of Oracle 11g R2 to get
more information on this amazing new feature see:
–  White Paper on OTN:

http://www.oracle.com/technology/deploy
 /availability/pdf/edition_based_redefinition.pdf

–  Tutorial on OTN:
http://www.oracle.com/technology/obe
 /11gr2_db_prod/appdev/ebr/ebr_otn.htm

–  Bryn Llewellyn interview on Oracle Development Tools
User Group (ODTUG) website
http://www.odtug.com

54 Copyright @ 2012, John Jay King

Wrapping it all Up

•  Oracle 11g adds significant new functionality to the
already robust database environment

•  With the production release of Oracle 11g R2 it’s
probably time for organizations to really get serious
about moving off of earlier releases

•  While an emphasis is sometimes placed on the features
of Oracle that support the Data Base Administrator, this
paper shows many Developer-oriented features of great
usefulness

55 Copyright @ 2012, John Jay King

Training Days 2013

Watch for the Date!

http://www.rmoug.org

56 Copyright @ 2012, John Jay King

Save the Date: April 22-26, 2012

Mandalay Bay Convention Center – Las Vegas, Nevada!

Collaborate 2012

57 Copyright @ 2012, John Jay King

58 Copyright @ 2012, John Jay King

Oracle 11g for Developers:
 What You Need to Know

To contact the author:
John King
King Training Resources
P. O. Box 1780
Scottsdale, AZ 85252 USA
1.800.252.0652 - 1.303.798.5727
Email: john@kingtraining.com

Today’s slides and examples are on the web:

http://www.kingtraining.com

Please Fill Out Session Evaluations

Thanks for your attention!

