
1/71

XML and Web Performance
presented to

CIMA - April 2009

presented by
John Jay King

King Training Resources
john@kingtraining.com

Download this paper and code examples from:
http://www.kingtraining.com

Copyright @ 2009, John Jay King

2/71
Copyright @ 2009, John Jay King 2/105http://www.kingtraining.com

Objectives

– Understand XML document processing
– Improve performance of XML processing
– Learn different factors impacting XML

performance
– Be able to improve the performance of XML

documents
– Understand how Oracle stores XML data
– Choose the best Oracle XMLType for the

performance of your application
– Be familiar with Oracle XMLType indexing

options

3/71
Copyright @ 2009, John Jay King 3/105http://www.kingtraining.com

eXtensible Markup Language (XML)

• XML is a set of rules for defining tags to describe
a document’s structure and parts

• XML is a "meta-markup" language, providing the
syntax used to define the syntax and structure of
a document, not the presentation or the format

• The XML specification is authored by the W3C
(World Wide Web Consortium www.w3.org)

• “Markup" is from typesetting: publishers "markup"
a document telling the typesetter how to format
the page

• XML is "extensible" because no tags are
predefined; organizations/industries define tags
for “XML Language” to support business needs

4/71
Copyright @ 2009, John Jay King 4/105http://www.kingtraining.com

Why XML?

• Is XML Cheaper? Smaller? Faster?
• Is XML more-capable?
• XML is STANDARD

– Character strings are common to all operating systems
and computer languages

– XML standardizes the character string formats
exchanged between programs and systems

5/71
Copyright @ 2009, John Jay King 5/105http://www.kingtraining.com

XML and Savings

• Savings attributed to XML are usually due to
reduced complexity (Standards for Technology in
Automotive Retail (STAR))
– STAR was used to standardize interchange of parts and

automobile information between automobile
manufacturers, suppliers, dealers, and credit
organizations

– Millions in estimated savings due to standardization

6/71
Copyright @ 2009, John Jay King 6/105http://www.kingtraining.com

XML Advantages

• XML is non-proprietary
• Elements and tags may be defined as needed

allowing specialized languages
• Document templates, files, and database data

can all be stored using an XML-described format
• Standardized formats make data easier to share

7/71
Copyright @ 2009, John Jay King 7/105http://www.kingtraining.com

XML Uses

• Industry groups and companies use XML to build
common tag sets and common data structures

• XML is frequently used by software vendors to
specify configuration

• XML is used to describe data files used for:
Electronic Data Interchange (EDI), word
processing, and more

8/71
Copyright @ 2009, John Jay King 8/105http://www.kingtraining.com

XML “Traits”

• XML is designed to be “human readable”
– Verbose tag names are used to aid readability
– Design “best practices” lead to use of sub-elements to

maximize flexibility
– Hierarchical nature of XML allows deep structures of

elements, sub-elements, sub-sub-elements and so on
– Tab characters and carriage-returns (end-of-line

markers) are added to support readability
• Result: XML documents take up too much space!

XML documents take too long to parse!
Nobody should need to read XML documents manually

(except when problem-solving)

9/71
Copyright @ 2009, John Jay King 9/105http://www.kingtraining.com

Tag/Element Naming

• XML has specific rules for naming of Tags/Elements
• Element names begin with a letter or an underscore
• Element names may contain letters, underscores

(_), numbers, hyphens (-), and colons (:)
• Start tags must match end tags exactly
• Names in XML are case-sensitive and may not

contain blanks (officially there is no length limit)
• Names should not begin with “xml”

<name>Jones</lastname> incorrect
<lastname>Jones</lastname> correct
<last name>Jones</last name> incorrect
<lastname>Jones</lastname> correct
<lastname>Jones</lastName> incorrect
<lastName>Jones</lastName> correct

10/71
Copyright @ 2009, John Jay King 10/105http://www.kingtraining.com

• Descriptive Attributes are added to an element’s
start tag using the name of the attribute followed by
an equal sign, followed by the value of the attribute
(surrounded by quotes or apostrophes)
<book isbn="0-13-960162-7" binding="perfect">

<name>Learning XML</name>
<author>Eric T Ray</author>
<publisher>O'Reilly</publisher>

</book>

• Attribute naming rules are the same as for element
naming, attribute names must be unique within an
element. Usually, attributes are used to provide
information about the data in an element

• Attribute values must be enclosed by quotation
marks (") or apostrophes (')

Attributes

11/71
Copyright @ 2009, John Jay King 11/105http://www.kingtraining.com

Elements and Attributes
<book isbn="0-13-960162-7" binding="perfect"

topic="IT XML" name="Learning XML"
author="Eric T Ray" publisher="O’Reilly" />

<book>
<isbn>0-13-960162-7</isbn>
<binding>perfect</binding>
<topic>IT XML</topic>
<name>Learning XML</name>
<author>Eric T Ray</author>
<publisher>O’Reilly</publisher>

</book>

<book isbn="0-13-960162-7" binding="perfect“ topic="IT XML" >
<name>Learning XML</name>
<author>Eric T Ray</author>
<publisher>O’Reilly</publisher>

</book>

12/71
Copyright @ 2009, John Jay King 12/105http://www.kingtraining.com

Which is “Better”

• Are Elements better than Attributes or vice-versa?
– Some feel attributes should be used for metadata or for

unchangeable values (primary keys)
– Some feel that elements are more flexible long-term
– Some feel that attributes without too many elements

reduces file sizes
– Attributes may not be divided in any way

(Elements may have sub-Elements and Attributes)
– Attributes may not be repeated within an element

(Elements may be repeated as specified by Schema)
• Choose the mechanism that best seems to fit the

business rules of your system

13/71
Copyright @ 2009, John Jay King 13/105http://www.kingtraining.com

• Strict rules determine that XML is "well-formed":
– Document should declare itself using an XML declaration
<?xml version="1.0" encoding="UTF-8"?>

– A single "root" element must completely contain all other
elements in the document (one set of outer tags)

– All elements that include data must have both start
<name> and end </name> tags

– Empty tags are marked using a slash before the close of
the start tag and omitting the end tag <name/>
(usually include attributes <name first=“Al” last=“Ono” />)

– Tags may not overlap, but, may be nested
– Attribute values enclosed in quotes (") or apostrophes (')
– XML tools refuse to process non-”well-formed” documents

"Well-Formed" XML

14/71
Copyright @ 2009, John Jay King 14/105http://www.kingtraining.com

Being “Well-Formed” Costs!

• Software processing XML must make sure the
document is “well-formed” before processing
(a requirement of the XML standard)
– XML document must be stored to make sure it is

“well-formed” (large documents take up space)
– Computer resources must be used to ensure that rules

for “well-formed”-ness are enforced

15/71
Copyright @ 2009, John Jay King 15/105http://www.kingtraining.com

Typical SOAP Invocation
• SOAP message received

– SOAP processor checks if message well-formed
– Process SOAP message and retrieve payload
– If payload is XML it is checked to be sure it is well-

formed before being passed to program
– Pass payload to program
– Program’s parser checks if document well-formed
– Program processes file
– Program generates XML result
– Parser checks to see if result is well-formed before

passing to SOAP
– SOAP parser checks XML to make sure it is well-formed
– Process repeated on other end…

16/71
Copyright @ 2009, John Jay King 16/105http://www.kingtraining.com

Schemas

• Being “well-formed” does not mean that the XML
document being transmitted/received is correct!

• W3C has a method for validating XML documents
called XML Schema (previously used “DTDs”)

• Schemas are well-formed XML documents
themselves describing an XML document's format

• With Schemas, XML documents and their format
descriptions use the same basic formatting rules
(XML) perhaps making it easier to work with both

• Schemas are also useful as documentation tools,
since they follow the rigid XML standard they are
machine-readable!

17/71
Copyright @ 2009, John Jay King 17/105http://www.kingtraining.com

XML Schema Syntax, page 1
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">
<xs:element name="myStudents">

<xs:complexType>
<xs:sequence>

<xs:element ref="class"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="class">

<xs:complexType>
<xs:sequence>

<xs:element ref="title"/>
<xs:element ref="numberdays"/>
<xs:element ref="scheduledClass"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

18/71
Copyright @ 2009, John Jay King 18/105http://www.kingtraining.com

XML Schema Syntax, page 2
<xs:element name="title" type="xs:string"/>

<xs:element name="numberdays" type="xs:byte"/>
...

<xs:element name="classcode">
<xs:simpleType>

<xs:restriction base="xs:short">
<xs:enumeration value="1504"/>
<xs:enumeration value="1508"/>
<xs:enumeration value="1511"/>

</xs:restriction>
</xs:simpleType>

...
</xs:schema>

19/71
Copyright @ 2009, John Jay King 19/105http://www.kingtraining.com

Using XML Schemas

• XML Schemas are sometimes referenced from an
XML document’s root element:

<?xml version="1.0" standalone="no" ?>
<?xml-stylesheet href="myStudents.css" type="text/css" ?>
<myStudents

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance“
xsi:noNamespaceSchemaLocation="myStudents.xsd">
<class>

<title>Introduction to XML</title>
...

20/71
Copyright @ 2009, John Jay King 20/105http://www.kingtraining.com

XPath

• XML Path Language (XPath) is designed to provide
quick and easy access to any node in our
document's hierarchy

• Having lots of information in XML is of little use if we
cannot get to data when it is needed, XPath to the
rescue!

• XPath provides a mechanism to address any
element or attribute

• XPath is a World Wide Web Consortium (W3C)
standard: http://www.w3.org/Style/XSL

21/71
Copyright @ 2009, John Jay King 21/105http://www.kingtraining.com

XPATH Locations
• XPath nodes are very similar to DOM (Document

Object Model) nodes; being sometimes-complex
webs of nested elements and attributes

• An XPath address points to a specific end-point
(position) in the hierarchy, or, to a specific node
– Location paths may be absolute or relative:

• Absolute paths start at the root node and move out from there
• Relative paths start at a preselected spot called the context node

(usually both easier and faster); context node is the current
location

– Each step in a location path is divided into three parts:
• Axis, describes the direction of travel through the nodes
• Node Test, to select the desired nodes
• Predicates, optional tests to eliminate some XML from output

22/71
Copyright @ 2009, John Jay King 22/105http://www.kingtraining.com

XML Performance

• The size of XML documents impacts performance
if many documents are being transmitted/stored

• XML Processing for “well-formed” testing cannot
be avoided

• XML Processing for schema validation is optional
in most XML environments and may be avoided if
unnecessary (careful!)

23/71
Copyright @ 2009, John Jay King 23/105http://www.kingtraining.com

XML Optimization

• Techniques exist to minimize the size of XML
documents

• Smaller XML documents reduce:
– Bandwidth requirements
– Memory space requirements
– XML Parsing time
– Storage requirements

• XML optimization techniques and savings apply to
just about any XML document

24/71
Copyright @ 2009, John Jay King 24/105http://www.kingtraining.com

Why Optimize XML?

• XML has become the "lingua franca" of Information
Technology data transfer used as:
– EDI (Electronic Data Interchange) messages
– Web Service messages
– Transaction messages
– Configuration data

• XML processing causes performance issues in
systems passing many XML documents or very
large XML documents

25/71
Copyright @ 2009, John Jay King 25/105http://www.kingtraining.com

Keep “True” to XML Standard
• XML optimization should not corrupt the integrity of

the XML document
• XML optimization techniques reduce the size of

XML documents while keeping the “human
readable” goal of XML
(though admittedly less-readable)

• Software and hardware products are available that
will convert XML documents to proprietary binary
forms to speed processing; eliminating the
advantages of standardized XML
(not discussed further here…)

26/71
Copyright @ 2009, John Jay King 26/105http://www.kingtraining.com

XML Optimization Techniques

• XML Optimization Techniques include:
– Elimination of whitespace
– Elimination of comments
– Careful use of CDATA sections
– Reducing name lengths for: Element, Attribute, and

Namespace
– “Flattening” Structure
– Careful use of Schema validation

27/71
Copyright @ 2009, John Jay King 27/105http://www.kingtraining.com

Eliminating Whitespace

• While human readability is a stated goal of XML
• In most cases XML is transmitted between

computer programs and humans need to read it
only when something goes wrong

• Eliminate extra blank spaces
• Eliminate indentation
• Eliminate tab characters
• Eliminate carriage-return line-feed characters

28/71
Copyright @ 2009, John Jay King 28/105http://www.kingtraining.com

Whitespace Reduction

• Document with carriage returns and tabs
<book>

<isbn>0-13-960162-7</isbn>
<binding>perfect</binding>
<topic>IT XML</topic>
<name>Learning XML</name>
<author>Eric T Ray</author>
<publisher>O’Reilly</publisher>

</book>

• Document with whitespace reduced (saves 8 chars at least)
<book><isbn>0-13-960162-7</isbn><binding>perfect</binding>
<topic>IT XML</topic><name>Learning XML</name><author>Eric T

Ray</author><publisher>O’Reilly</publisher></book>

29/71
Copyright @ 2009, John Jay King 29/105http://www.kingtraining.com

Comments

• XML comments are useful when describing an
XML document to a human

• Many good XML document designers include
comments explaining the roles of Elements and
Attributes

• Most comments are “whitespace” in production use
and may be eliminated

30/71
Copyright @ 2009, John Jay King 30/105http://www.kingtraining.com

CDATA Sections

• XML allows documents to include text that might
contain XML formatting characters

• CDATA sections are simply passed by XML
processing without any attempt to check them for
“well-formed”-ness

• CDATA sections should be as short as possible
(may be tricky)

31/71
Copyright @ 2009, John Jay King 31/105http://www.kingtraining.com

Reduce XML Content
• XML documents being used as Web Service

messages or transactions sometimes contain
information that is redundant at best and potentially
incorrect

• For example if a purchase document includes:
– Item ID, Item Description, Item Size, and Item weight in

addition to quantity purchased, price, and date
– Chances are Item ID may be used by the programs on

either end of the transaction to look up Item specifics
• Consider eliminating redundant Elements and

Attributes

32/71
Copyright @ 2009, John Jay King 32/105http://www.kingtraining.com

Reducing Name Sizes
• Since human readability is a stated object of XML; names

tend to be lengthy
• Element names are repeated in Start <name>

and End </name> tags
• Namespace prefixes are repeated each time they are

referenced <myNamespace:myElement>
• In most systems XML documents are “seen” only be

computer programs; why not make names as short as
possible?

• Consider reducing names to 1-3 character meaningful
mnemonics so that the document may still be read in the
event of problems

33/71
Copyright @ 2009, John Jay King 33/105http://www.kingtraining.com

Name Shrinking
• Names at original length

<book>
<isbn>0-13-960162-7</isbn>
<binding>perfect</binding>
<topic>IT XML</topic>
<name>Learning XML</name>
<author>Eric T Ray</author>
<publisher>O’Reilly</publisher>

</book>

• Abbreviated names (reduced 34 characters)
<bk>

<isbn>0-13-960162-7</isbn>
<bdg>perfect</bdg>
<top>IT XML</top>
<nam>Learning XML</nam>
<auth>Eric T Ray</auth>
<pub>O’Reilly</pub>

</bk>

34/71
Copyright @ 2009, John Jay King 34/105http://www.kingtraining.com

XML Structures

• XML Documents with a structure of Elements,
Sub-Elements, and Sub-Sub-Elements are said to
be “vertical”
<book>

<isbn>0-13-960162-7</isbn>
<binding>perfect</binding>
<topic>IT XML</topic>
<name>Learning XML</name>
<author>Eric T Ray</author>
<publisher>O’Reilly</publisher>

</book>

• XML Document structures using Attributes rather
than Sub-Elements are said to be “horizontal”
<book isbn="0-13-960162-7" binding="perfect"

topic="IT XML" name="Learning XML"
author="Eric T Ray" publisher="O’Reilly" />

35/71
Copyright @ 2009, John Jay King 35/105http://www.kingtraining.com

If Elements are optional or limited to one occurrence;
Attributes may be used rather than Sub-Elements
without changing the intent of the XML designer
(“flattening” the vertical document)

• Using XML “Empty Elements” the ending Element
tag is eliminated:

<name first=”Al” last=”Orr” />

• Eliminating unnecessary Sub-Elements (vertical
depth) reduces the number of tags required

“Flattening” Structure

36/71
Copyright @ 2009, John Jay King 36/105http://www.kingtraining.com

Schema Validation

• Careful use of Schema validation can reduce
processing time
– Scheme validation is optional
– If an XML document is being used in a closed-loop

system; validation may be redundant and wasteful
– Complex Schema validations take longer than simple

Schema validations
• Make sure that the complex Schema testing is

really necessary

37/71
Copyright @ 2009, John Jay King 37/105http://www.kingtraining.com

Optimize XML Processing

• The Parser used to process XML can have a
dramatic impact on performance

• As usual in IT there is no “one-size-fits-all” solution
• Many types of Parsers are available, the most

common are:
– DOM
– SAX
– JDOM
– StAX

38/71
Copyright @ 2009, John Jay King 38/105http://www.kingtraining.com

XML Processors
• Software that reads/uses XML is called an

“XML Processor”
• Many web browsers, XML editors, and software

products are XML processors
• Some features often provided in XML Processors:

– Parser Translate XML markup & data into tokens
– Event Switcher Sorts/routes tokens to event handler

or Call-back procedure
– Call-back procedures Responds to events and adds

nodes to “tree”
– Tree representation Persistent hierarchy of XML

document, may allow manipulation
– Tree processor Code that processes the XML tree

39/71
Copyright @ 2009, John Jay King 39/105http://www.kingtraining.com

XML Parsing

• Parsers are the fundamental part of any XML
processor

• Parsers provide several useful purposes, they are
used to:
– Read XML data
– Translate the data into recognizable tokens

(the stream of characters is separated into instructions
or hierarchical information)

– Assemble data into a hierarchy

40/71
Copyright @ 2009, John Jay King 40/105http://www.kingtraining.com

XML Parsers are Strict!

• All documents must be “well-formed”
– Start tags must have End tags (or be empty)
– Start and End tag names must match exactly (case too!)
– Ambiguous names are not allowed

• By standard, XML parsers are not allowed to “fix”
things

• Any error aborts the parsing operation
• Strict parsing means that a successfully parsed

document is predictable and reliable

41/71
Copyright @ 2009, John Jay King 41/105http://www.kingtraining.com

Parser Software
• Many parsers are available, including:

– Xerces (Java, C++, Perl)
– JAXP (Java)
– IBM XML Parser for Java
– Oracle XML Parser (Java)
– Microsoft MSXML (C++, C#, JavaScript, VB, .NET, Java,

Perl, Python)
– IBM Enterprise COBOL
– XML::Parser (Perl)
– IBM Alphaworks XML for C++
– Xparse (Python)

• Get a more-complete list of available parsers at:
http://wdvl.com/Software/XML/parsers.html

42/71
Copyright @ 2009, John Jay King 42/105http://www.kingtraining.com

Parser APIs
• Programs use XML via Application Programming

Interfaces (APIs)
– Low-level APIs Allow the programmer to deal

directly with the XML document and its data
• DOM, SAX, and JDOM are the most commonly-used low-level

APIs today
• JAXP (Java API for XML Programming) is also popular

– High-level APIs Provide a simpler interface that
calls one of the lower-level APIs “under-the-covers”

– High-level APIs tend to be easier to develop with but
usually add processing costs (no free-lunch!)

• XML data binding (JAXB) is an example of a high-level interface

43/71
Copyright @ 2009, John Jay King 43/105http://www.kingtraining.com

Low-Level XML APIs
• DOM, SAX, JDOM, and JAXP all offer low-level

Application Programming interfaces:
– DOM (Document Object Model) has been around for

many years and is frequently used
– SAX (Simple API for XML) offers the most basic Java-

specific features
– JDOM (Java Document Object Model) is a Java-specific

API tailored specifically to the needs of Java
programmers

– JAXP (Java API for XML Programming) is really a
higher-level API designed to take some of the complexity
out of using DOM, SAX, or JDOM

44/71
Copyright @ 2009, John Jay King 44/105http://www.kingtraining.com

SAX, DOM, JDOM

• The three most commonly used Java-XML
APIs today are SAX, DOM, and JDOM:
– SAX allows the quickest possible processing of an XML

document since data is read and written in a continuous
stream; however, it is up to the programmer to make
some sense of what is being processed

– DOM reads an XML document into memory and creates
a hierarchical "tree" structure that may be referenced in
a reasonably simple fashion, DOM has been available
for quite some time and is sometimes criticized for not
being Java-like

– JDOM is the brainchild of a Java programmer who
wanted the convenience of DOM but also wanted a
pure-Java mechanism

– Other APIs exist, these are simply the most common

45/71
Copyright @ 2009, John Jay King 45/105http://www.kingtraining.com

DOM

• DOM is a recommendation of the W3C
• DOM creates an object-tree that is very useful for

parsing and processing XML's hierarchical data
• DOM is both platform and language agnostic and

is heavily used in Java, C++, and JavaScript
environments

• DOM parsers read XML documents and organize
the data in memory into a “tree” structure of objects

• DOM then uses the “tree” for processing
– Tree has a root that encompasses the entire document
– Programs may navigate the branches of the tree
– Nodes of the tree may be read and/or modified

46/71
Copyright @ 2009, John Jay King 46/105http://www.kingtraining.com

DOM “Tree”

47/71
Copyright @ 2009, John Jay King 47/105http://www.kingtraining.com

Simple API for XML (SAX)
• SAX is the basic mechanism for Java-XML

programming (also IBM Enterprise COBOL)
• SAX reads an XML document and passes the

document's elements one at a time to the program
• SAX uses “event-based” parsing where values are

read and presented to the program using a method
created by the program

• When using SAX at least two Java classes are
involved:
– Controlling class Uses “Content Handler” to process

XML document
– Content Handler Reads and processes XML data

• SAX might also involve an Event Handler class and/or an
Error Handler class

48/71
Copyright @ 2009, John Jay King 48/105http://www.kingtraining.com

SAX Content Handler
• Content handlers implement the ContentHandler

interface and must include code for “events”:
– setDocumentLocator Get object for finding SAX events
– startDocument Begin XML document
– processingInstructionExamine PI's (except xml PI)
– startPrefixMapping Map prefix to namespace
– startElement Start XML element
– characters Process element characters
– endElement End of XML element
– endPrefixMapping Stop mapping prefix to namespace
– ignorableWhitespace Return contiguous whitespace
– skippedEntity Return name of skipped entity
– endDocument End of XML document

49/71
Copyright @ 2009, John Jay King 49/105http://www.kingtraining.com

SAX Parsing of “myBooks.xml”

• SAX parsers read a document as events:
start element: middleName

text: "T"
end element: middleName

end element: author
start element: publisher
text "O'Reilly"

end element: publisher
end element: book

... <more “book” elements> …
end element: myBooks

end document

start document
start element: myBooks
start element: book
start element: name
text: "Learning XML"

end element: name
start element: author
start element: lastName

text: "Ray"
end element: lastName
start element: firstName

text: "Eric"
end element: firstName

50/71
Copyright @ 2009, John Jay King 50/105http://www.kingtraining.com

JAXP

• JAXP (Java API for XML Parsing) was released by
Sun in an attempt to make Java XML parsing
simpler through abstraction

• Many programmers do not realize a new parser is
being used since Sun's parser is downloaded
when people download JAXP

• JAXP is really an API and is not a parser
• JAXP makes it easier to use the existing SAX,

DOM, and JDOM APIs

51/71
Copyright @ 2009, John Jay King 51/105http://www.kingtraining.com

JAXP and SAX

• JAXP works with SAX using the SAXParser class
• SAXParser objects are created using a

SAXParserFactory object
• SAXParser and SAXParserFactory objects use the

available SAX parser to accomplish their work
• Generic factory methods are used to initiate

validation and namespace recognition
• Generic methods are used to test current settings
• The parse() method allows specification of a

DefaultHandler object or HandlerBase object to
handle document events

52/71
Copyright @ 2009, John Jay King 52/105http://www.kingtraining.com

JAXP and DOM

• JAXP with DOM is pretty much the same as using
JAXP with SAX only using slightly different class
names

• The DocumentBuilderFactory and
DocumentBuilder classes seen earlier are used to
generically access the available DOM parser

53/71
Copyright @ 2009, John Jay King 53/105http://www.kingtraining.com

JAXB

• JAXB (Java Architecture for XML Binding) provides
a “bridge” between XML and Java, it uses APIs like
SAX and DOM it does not replace them

• JAXB maps XML to Java objects
• JAXB uses a DTD at the same level of the XML

– Maps XML to Java data objects
– JAXB acts as a code-generator using a DTD or Schema

to generate Java class code mapping XML to internal
data objects

– JAXB uses a DTD or Schema to “bind” to a set of
generated classes

– The binding schema is an XML-based binding language

54/71
Copyright @ 2009, John Jay King 54/105http://www.kingtraining.com

Benefits of JAXB
• Code is much simpler “hiding” the complexity of

XML parsing
• SAX and DOM are generic XML parsers and parse

any well-formed XML
• JAXB creates a SAX or DOM parser that is specific

to your DTD or Schema and parses only valid XML
• JAXB produces a “tree” in memory specific to the

Elements and Attributes defined by your DTD or
Schema

• In early releases JAXB worked with DTD only

55/71
Copyright @ 2009, John Jay King 55/105http://www.kingtraining.com

How JAXB Works

• JAXB is based upon data binding which includes:
– Java source file and class generation

Using utility program using DTD or Schema as input to
produce Java class definitions matching document

– Unmarshalling
Taking data from XML document into Java objects

– Marshalling
Moving data from Java objects into XML document

– Binding Schemas
Rules for generating Java classes

56/71
Copyright @ 2009, John Jay King 56/105http://www.kingtraining.com

Marshalling/Unmarshalling

57/71
Copyright @ 2009, John Jay King 57/105http://www.kingtraining.com

StAX
• Before StAX programmers had only two likely

choices when processing XML documents:
– Reading/writing streamed XML content (SAX)
– Building the entire document in memory before

processing (DOM)
• Both SAX and DOM have drawbacks:

– SAX programs must carefully track progress through the
document creating miscellaneous structures as needed

– DOM stores the entire document in memory using a
generic "tree" structure that is easy to use but bulky

• Streaming APIs like SAX are called "push" APIs;
they shovel data to the program whether the
program is ready or not based upon events

58/71
Copyright @ 2009, John Jay King 58/105http://www.kingtraining.com

Using StAX

• StAX is even simpler than SAX, it is a "pull" type
API that allows the programmer to control parsing
via an iterator-based API and stream of events

• StAX provides both a low-level cursor API and a
higher-level event-iterator API
– Cursor-based API (based upon XMLStreamWriter); best

for creating a document from application data
– Event-based API (based upon XMLEventWriter); best

when creating a new document based upon multiple
existing documents

59/71
Copyright @ 2009, John Jay King 59/105http://www.kingtraining.com

What is a “Pull-Type” API?

• StAX is a newer style of API, a pull API
• Pull APIs are streaming APIs and very fast, but are

also memory efficient
• The program is in control asking the parser for the

next part of the document the program wishes to
process
(the program pulls data from the document)

60/71
Copyright @ 2009, John Jay King 60/105http://www.kingtraining.com

Dual Methods of StAX

61/71
Copyright @ 2009, John Jay King 61/105http://www.kingtraining.com

StAX Cursor API
• The cursor-based API uses a virtual cursor to process the

XML document
• When reading, the XMLStreamReader is created using an

XMLInputFactory
• The API has a built-in iterator using hasNext() and next()

methods to walk throught the document
• getText() and other methods may be used to obtain

information from the current element, attribute, or text
• When writing with the Cursor API the XMLStreamWriter

provides methods used to write elements, attributes, and
text to the XML file

• XMLStreamWriter is created using the XMLOutputFactory

62/71
Copyright @ 2009, John Jay King 62/105http://www.kingtraining.com

StAX Event Iterator API

• The event iterator API reads and writes XML
data too

• A new factory, XMLEventFactory builds events to
be processed

• Once again a built-in iterator using hasNext() and
nextEvent() methods is available to process
various events

• When writing, the XMLEventFactory creates
events that may be added to the output with the
XMLEventWriter object

63/71
Copyright @ 2009, John Jay King 63/105http://www.kingtraining.com

Why Pull Parsing?
• Pull Parsing is the wave of the future for many applications
• Stax grew out of the need to read and write XML in an

efficient manner in the context of XML Binding and Web
Services

• XML Pull Parsing is touted as a high performance
alternative to DOM for XML parsing that is easier to use
than SAX

• SAX is a push API and used more widely than any other
push API currently in use

• So far many pull APIs have been created and only recently
has the industry coalesced around a single one (StAX)

• Choosing between tree oriented (DOM), streaming push
(SAX), and pull (StAX) parsers it is important to understand
the limits and advantages of each

64/71
Copyright @ 2009, John Jay King 64/105http://www.kingtraining.com

Choosing Parser API
• Clearly there are many issues involved in

processing XML data; choose the parser which
best suits your situation
– DOM Small-medium size documents;

easy to use, supported widely
– SAX Longer documents, more difficult to use,

supported widely
– StAX Longer documents, can be difficult to use,

not available in all environments
– JAXB Use SAX or DOM “under the covers”,

requires Schema/DTD, Java-only,
easier programming

– JAXP Use SAX or DOM “under the covers”,
easier than DOM/SAX/StAX not as easy
as JAXB, Java-only

65/71
Copyright @ 2009, John Jay King 65/105http://www.kingtraining.com

Oracle XML DB

• Oracle's XML support is provided as XML DB:
– W3C (Worldwide Web Consortium) XML compliance
– XMLType is an Oracle-defined datatype storing XML data

• Unstructured (CLOB underneath)
• Structured (“Shredded” into relational columns and rows)
• Binary XMLType (new with Oracle 11g)

– The XML parser is part of the database
– Oracle provides several XML-oriented SQL functions to

support XML, some support the emerging ISO/ANSI SQLX
initiative

– Check the reference manual for complete information:
"XML DB Developer’s Guide"

66/71
Copyright @ 2009, John Jay King 66/105http://www.kingtraining.com

XMLType Datatype

• XMLType may be used to represent a document
or document fragment in SQL

• XMLType has several built-in member functions
to operate on XML content

• XMLType may be used in PL/SQL as variables,
return values, and parameters

• XMLType APIs are provided for both PL/SQL and
Java programming

• XMLType is also supported on the client via FTP,
HTTP, and WebDav

67/71
Copyright @ 2009, John Jay King 67/105http://www.kingtraining.com

XMLType Functions

• XMLType member functions include:
– createXML() Create XMLType instance
– existsNode() Checks if XPath can find valid nodes
– extract() Uses XPath to return XML fragment
– isFragment() Checks if document is a fragment
– getClobVal() Gets document as a CLOB
– getStringVal() Gets value as a string
– getNumberVal() Gets numeric value as a number
– isSchemaBased Returns 1 if schema based (0 if not)
– isSchemaValid True if XMLType is valid
– schemaValidate Validates XMLType using Schema
– Transform Apply XSL Stylesheet to XMLType
– XMLType Constructs an XMLType instance

from CLOB, VARCHAR2 or object

68/71
Copyright @ 2009, John Jay King 68/105http://www.kingtraining.com

ISO-ANSI SQL/XML (SQLX)

• SQL/XML is an ISO-ANSI working draft for XML-
Related Specifications (aka. SQLX)

• SQLX defines how SQL may be used with XML
• SQLX functions are used to generate XML from

existing relational (and object relational) tables
• SQLX standard functions supported by Oracle:

– XMLAgg()
– XMLAttribute()
– XMLCast ()
– XMLComment ()
– XMLConcat()
– XMLElement()

– XMLExists ()
– XMLForest()
– XMLParse ()
– XMLPI ()
– XMLQuery ()
– XMLSerialize ()

69/71
Copyright @ 2009, John Jay King 69/105http://www.kingtraining.com

Oracle SQL/XML Extensions
• XMLCdata Generate cdata section from specified

expression
• XMLColAttVal Create series of XML fragments using an

element name of "column" and column
names and values as attributes

• XMLDiff Compare two XML documents and return
difference(s) as a document

• XMLPATCH Patches XMLType using second XMLType
• XMLRoot Generate XML identification line (PI)
• XMLSequence Creates Varray of XMLType instances
• SYS_XMLGEN Convert specified database row and

column into an XML document
• SYS_XMLAGG Generate single XML document from

aggregate of XML data

70/71
Copyright @ 2009, John Jay King 70/105http://www.kingtraining.com

Other XML Functions
• APPENDCHILDXML
• DELETEXML
• DEPTH
• EXTRACT (XML)
• EXISTSNODE
• EXTRACTVALUE
• INSERTCHILDXML
• INSERTXMLBEFORE
• PATH
• SYS_DBURIGEN
• SYS_XMLAGG
• SYS_XMLGEN
• UPDATEXML
• XMLTransform

71/71
Copyright @ 2009, John Jay King 71/105http://www.kingtraining.com

• XMLElement is used to define Elements
XMLElement("MyElementName",valueExp)

– MyElementName may be any valid XML name
– valueExp may be a literal, column name, or expression

providing the value for the element (May be nested)
• XMLAttributes is used to define Element Attributes; it

should be used inside XMLElement and precede any
SubElements for the chosen Element
XMLAttributes("MyAttributeName",valueExp)

– MyAttributeName may be any valid XML name
– valueExp may be a literal, column name, or expression

providing the value for the element

Most-Used XML Functions, 1

72/71
Copyright @ 2009, John Jay King 72/105http://www.kingtraining.com

Most-Used XML Functions, 2

• XMLForest works like nested XMLElements
XMLForest(valExp1,valExp2 AS "MyElement2")

– valExp1 may be a literal, column name, or expression
providing the value for the element

– valExp2 may be a literal, column name, or expression
providing the value for the element

– MyElement2 may be any valid XML name
• XMLAgg aggregates calls to XMLElement,

XMLAttribute, and XMLForest (and others) to create
an XML document

• Column name used if Element and/or Attribute not
explicitly named

73/71
Copyright @ 2009, John Jay King 73/105http://www.kingtraining.com

XML Schema Support

• XML schemas may be used to automatically
create tables and types, or, to validate updates
and inserts

• XML schemas may be used as the basis for
XMLType tables and columns (but, schemas are
not required to store XMLType data)

• XML schemas must be registered in the database
• Once registered, XML schemas may be

referenced using URL notation
• Registered XML schemas may be used to map

XML documents to structured or unstructured
database storage

74/71
Copyright @ 2009, John Jay King 74/105http://www.kingtraining.com

Registering Schema
• Schemas must be created and tested (use an

appropriate XML editor), then, register them with
DBMS_XMLSCHEMA

begin
dbms_xmlschema.registerschema('myBooks.xsd',
'<?xml version="1.0" encoding="UTF-8"?>
<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xs:element name="myBooks">
<xs:complexType>

<xs:sequence>
<xs:element ref="book"

maxOccurs="unbounded"/>
**** rest of schema definition ****

</xs:schema>',true,true,false,false);
end;
/

75/71
Copyright @ 2009, John Jay King 75/105http://www.kingtraining.com

Using XMLType

• Three XMLType storage mechanisms are
available:
– Unstructured (CLOB underneath)
– Structured (“Shredded” into relational columns and rows)
– Binary XMLType (new with Oracle 11g)

• XMLType may be used to represent a document or
document fragment in SQL

76/71
Copyright @ 2009, John Jay King 76/105http://www.kingtraining.com

Unstructured XMLType

• Unstructured XML Type data is stored AS-IS
without any change to the data

• Internally the data is stored as CLOB

77/71
Copyright @ 2009, John Jay King 77/105http://www.kingtraining.com

Structured XMLType

• XML data is “shredded”
– XML data separated and stored as database columns

and rows on input
– XML data “unshredded” (reassembled) for output

• Whitespace and formatting is removed but DOM
fidelity is maintained (data is not altered)

• Requires XML Schema
(must be registered before use)

78/71
Copyright @ 2009, John Jay King 78/105http://www.kingtraining.com

Binary XMLType (11g on)

• Several improvements over unstructured storage
including:
– More efficient database storage
– Piece-wise updating
– Indexing
– Fragment extraction

• XML data stored "as-is" (whitespace/formatting
unaltered)

• May use XML Schema before or after initial
creation but does not require XML Schema

79/71
Copyright @ 2009, John Jay King 79/105http://www.kingtraining.com

Testing XML Performance

• Over the following pages are several examples
using the Oracle “SH” Sales sample schema to
produce an XML document containing product
orders (one XML document per order)
– Query uses SQL XML functions to select database data

and create XML output
– Query joins the SH.SALES and SH.PRODUCT tables
– The query was limited to return only 29,999 rows

(rownum < 30000)

80/71
Copyright @ 2009, John Jay King 80/105http://www.kingtraining.com

Test Data Creation

• Three sets of test data were created:
– Data with Long Element and Sub-Element names
– Data with Abbreviated Element and Sub-Element names
– Data with Sub-Elements converted to Attributes

81/71
Copyright @ 2009, John Jay King 81/105http://www.kingtraining.com

Long Names
select xmlroot(xmlelement("sales",xmlelement("product",

xmlattributes(cust_id as "custId",
pr.prod_id as "prodId"),

xmlelement("prodName",prod_name),
xmlelement("timeId",

to_char(time_id,'yyyy.-hh24:mi.ss')),
xmlelement("supplierId",supplier_id),
xmlelement("category",prod_category),
xmlelement("categoryId",prod_category_id),
xmlelement("price",prod_list_price),
xmlelement("qtySold",quantity_sold),
xmlelement("gross",amount_sold))))

from sh.sales sa, sh.products pr
where sa.prod_id = pr.prod_id

and sa.channel_id in (3)
and sa.promo_id in (999)
and extract (year from sa.time_id) = 2000
and rownum < 30000

82/71
Copyright @ 2009, John Jay King 82/105http://www.kingtraining.com

Sample Long Data
• Data below is formatted; test data eliminated

whitespace, tabs, indentation, and crlf characters
<?xml version="1.0" encoding="UTF-8"?>
<sales>

<product custId="564" prodId="13">
<prodName>5MP Telephoto Digital Camera</prodName>
<timeId>2000.-00:00.00</timeId>
<supplierId>1</supplierId>
<category>Photo</category>
<categoryId>204</categoryId>
<price>899.99</price>
<qtySold>1</qtySold>
<gross>1075.12</gross>

</product>
</sales>

83/71
Copyright @ 2009, John Jay King 83/105http://www.kingtraining.com

Short Names
select xmlroot(xmlelement("sa",xmlelement("pr",

xmlattributes(cust_id as "cid",
pr.prod_id as "pid"),

xmlelement("nm",prod_name),
xmlelement("tid",

to_char(time_id,'yyyy.-hh24:mi.ss')),
xmlelement("sid",supplier_id),
xmlelement("ct",prod_category),
xmlelement("ctId",prod_category_id),
xmlelement("pr",prod_list_price),
xmlelement("qty",quantity_sold),
xmlelement("gr",amount_sold))))

from sh.sales sa, sh.products pr
where sa.prod_id = pr.prod_id

and sa.channel_id in (3)
and sa.promo_id in (999)
and extract (year from sa.time_id) = 2000
and rownum < 30000

84/71
Copyright @ 2009, John Jay King 84/105http://www.kingtraining.com

Sample Short Data
• Data below is formatted; test data eliminated

whitespace, tabs, indentation, and crlf characters
<?xml version="1.0" encoding="UTF-8"?>
<sa>
<pr cid="564" pid="13">
<nm>5MP Telephoto Digital Camera</nm>
<tid>2000.-00:00.00</tid>
<sid>1</sid>
<ct>Photo</ct>
<ctId>204</ctId>
<pr>899.99</pr>
<qty>1</qty>
<gr>1075.12</gr>

</pr>
</sa>

85/71
Copyright @ 2009, John Jay King 85/105http://www.kingtraining.com

Sub-Elements as Attributes
select xmlroot(xmlelement("sa",

xmlattributes(cust_id as "cid",
pr.prod_id as "pid",
prod_name as "nm",
to_char(time_id,'yyyy.-hh24:mi.ss') as "tid",
supplier_id as "sid",
prod_category as "cat",
prod_category_id as "ctId",
prod_list_price as "pr",
quantity_sold as "qty",
amount_sold "gr"))))

from sh.sales sa, sh.products pr
where sa.prod_id = pr.prod_id

and sa.channel_id in (3)
and sa.promo_id in (999)
and extract (year from sa.time_id) = 2000
and rownum < 30000

86/71
Copyright @ 2009, John Jay King 86/105http://www.kingtraining.com

Sample Attribute Data

• Data below is formatted; test data eliminated
whitespace, tabs, indentation, and crlf characters

<?xml version="1.0" encoding="UTF-8"?>
<sa>

<pa cid="564" pid="13"
nm="5MP Telephoto Digital Camera"
tid="2000.-00:00.00" sid="1" cat="Photo" ctId="204"
pr="899.99“ qty="1" gr="1075.12">

</pa>
</sa>

87/71
Copyright @ 2009, John Jay King 87/105http://www.kingtraining.com

Total Sample Size

• For each type (Long, Short, Attribute) of output
29,999 XML documents were generated

• I/O costs and times were similar in all three cases
• Output sizes varied immensely:

– Long 39.4 MB transmitted to client
– Short 28.9 MB transmitted to client
– Attribute 27,3 MB transmitted to client
(not really a meaningful number except to illustrate

difference in return quantities)

88/71
Copyright @ 2009, John Jay King 88/105http://www.kingtraining.com

Unstructured Data

• For each type of data an Unstructured table using
the XML documents as a data item were created
– Each row uses a sequence number to create a key
– Each row has one XML document as a column

create table xmlperfLong1 (
sales_id number(5) not null primary key,
sales XMLTYPE)
tablespace xmlperfLong1_space;

89/71
Copyright @ 2009, John Jay King 89/105http://www.kingtraining.com

Unstructured Insert
• For each type of data the queries shown earlier

were used in an “INSERT … AS SELECT …”

insert into xmlperfLong1
select

-- “Long”, “Short”, and “Attribute” query
from sh.sales sa, sh.products pr
where sa.prod_id = pr.prod_id

and sa.channel_id in (3)
and sa.promo_id in (999)
and extract (year from sa.time_id) = 2000
and rownum < 30000;

90/71
Copyright @ 2009, John Jay King 90/105http://www.kingtraining.com

Unstructured Performance
• Here are some basic numbers from the creation of

Unstructured data using SQL*Plus Autotrace output
(my DBA friends are groaning here…), timing, and
tablespace size

Time: 00:00:21.93Time: 00:00:23.06Time: 00:00:29.12

20,185,088 bytes11,141,120 bytes14,286,848 bytes

70439 recursive calls
105908 db block gets

8679 consistent gets
1009 physical reads

70616 recursive calls
106453 db block gets

8865 consistent gets
1008 physical reads

70715 recursive calls
109735 db block gets

9293 consistent gets
1023 physical reads

AttributeShortLong

91/71
Copyright @ 2009, John Jay King 91/105http://www.kingtraining.com

• For each type of data an Structured table using the
XML documents as a data item were created
– Each row uses a sequence number to create a key
– Each row has one XML document as a column using a

schema

create table xmlperfLong1U (
sales_id number(5) not null primary key,
sales XMLTYPE)
xmltype column sales store as object relational

xmlschema "xmlperfLong.xsd"
element "sales"

tablespace xmlperfLong1U_space;

Structured Data

92/71
Copyright @ 2009, John Jay King 92/105http://www.kingtraining.com

Structured Insert
• For each type of data the queries shown earlier

were used in an “INSERT … AS SELECT …”

insert into xmlperfLong1U
select

-- “Long”, “Short”, and “Attribute” query
from sh.sales sa, sh.products pr
where sa.prod_id = pr.prod_id

and sa.channel_id in (3)
and sa.promo_id in (999)
and extract (year from sa.time_id) = 2000
and rownum < 30000;

93/71
Copyright @ 2009, John Jay King 93/105http://www.kingtraining.com

Structured Performance
• Here are some basic numbers from the creation of

Structured data using SQL*Plus Autotrace output
(my DBA friends are groaning here…), timing, and
tablespace size

Time: 00:11:27:39Time: 00:11:26.06Time: 00:11:25:53

8,388,608 bytes8,388,608 bytes8,388,608 bytes

70228 recursive calls
103312 db block gets

8385 consistent gets
1034 physical reads

70316 recursive calls
103305 db block gets

8385 consistent gets
1042 physical reads

70394 recursive calls
103296 db block gets

8404 consistent gets
1054 physical reads

AttributeShortLong

94/71
Copyright @ 2009, John Jay King 94/105http://www.kingtraining.com

• For each type of data a Binary table using the XML
documents as a data item were created
– Each row uses a sequence number to create a key
– Each row has one XML document as a column

create table xmlperfLong1U (
sales_id number(5) not null primary key,
sales XMLTYPE)
xmltype column sales store as binary xml

xmlschema "xmlperfLong.xsd"
element "sales"

tablespace xmlperfLong1U_space;

Binary Data

95/71
Copyright @ 2009, John Jay King 95/105http://www.kingtraining.com

Binary Insert
• For each type of data the queries shown earlier

were used in an “INSERT … AS SELECT …”

insert into xmlperfAttr1U
select

-- “Long”, “Short”, and “Attribute” query
from sh.sales sa, sh.products pr
where sa.prod_id = pr.prod_id

and sa.channel_id in (3)
and sa.promo_id in (999)
and extract (year from sa.time_id) = 2000
and rownum < 30000;

96/71
Copyright @ 2009, John Jay King 96/105http://www.kingtraining.com

Binary Performance
• Here are some basic numbers from the creation of Binary

data using SQL*Plus Autotrace output (my DBA friends are
groaning here…), timing, and tablespace size

Time: 00:04:56:23Time: 00:05:06.56Time: 00:05:05:54

7,995,392 bytes7,995,392 bytes6,946,816 bytes

71386 recursive calls
103604 db block gets
278889 consistent gets

1105 physical reads

71401 recursive calls
103220 db block gets
278835 consistent gets

1105 physical reads

71180 recursive calls
103074 db block gets
278786 consistent gets

1063 physical reads

AttributeShortLong

97/71
Copyright @ 2009, John Jay King 97/105http://www.kingtraining.com

• XML data may be indexed to increase efficiency like
other Oracle tables

• Unstructured XML data (CLOB storage)
– XML & text aware indexing and searching with Oracle Text

• Structured XML data (Object-Relational storage)
– Automatic query rewrite enables all existing indexes types

• Binary XML data
– Use XMLIndex type or standard index

create index book_author on myBooks
(books.extract('/myBooks/book/author.text()').getStringVal())

Indexing XML Content

98/71
Copyright @ 2009, John Jay King 98/105http://www.kingtraining.com

11g XMLIndex

• Oracle 11g introduces a new index type for XMLType called
XMLIndex

• XMLIndex can improve performance of XPath-based
predicates and fragment extraction

• XMLIndex is a (logical) domain index consisting of
underlying physical table(s) and secondary indexes
(replaces CTXSYS.CTXXPath; Oracle recommends
replacing any CTXXPath indexes with XMLIndex)

• Supported by PL/SQL DBMS_XMLINDEX package

99/71
Copyright @ 2009, John Jay King 99/105http://www.kingtraining.com

Test Platform

• When tuning performance there are few absolutes;
all tests shown in these notes were performed
under the following conditions:
– Hardware: x86, 4GB RAM, Toshiba Tecra M9
– Software: Microsoft Windows XP Pro,

SQL*Plus,
Oracle 11.1.0.6 Enterprise Edition

– Machine had no other significant programs consuming
resources or disk activity

– Only 30,000 (29,999) rows of test data were processed

100/71
Copyright @ 2009, John Jay King 100/105http://www.kingtraining.com

“Your Mileage May Vary…”

• Caution! Your results may be different than mine
• Please confirm any “improvements” you make

by testing thoroughly in the actual runtime
environment

101/71
Copyright @ 2009, John Jay King 101/105http://www.kingtraining.com

Conclusion

• Can I Make XML Go Faster? -- Yes!
– Eliminate non-essential whitespace including tabs and

carriage-return line-feed characters
– Eliminate non-essential Elements and Attributes
– Reduce size of Element and Attribute Names
– Consider “flattening” document by converting Elements into

Attributes where practical
– Choose appropriate Database (Oracle or other) XMLType

• Unstructured
• Structured
• Binary
• Index XMLType data

102/71

Training Days 2010

February 18-19 2009!
Save the dates!

103/71
Copyright @ 2009, John Jay King 103/105http://www.kingtraining.com

Save the Date: April 2009

Disney World - Orlando, Florida!

IOUG-Collaborate 2009

104/71

105/71

XML and Web Performance?

To contact the author:

John King
King Training Resources
6341 South Williams Street
Littleton, CO 80121-2627 USA
1.800.252.0652 - 1.303.798.5727
Email: john@kingtraining.com

Please contact us for your training needs:
SOA design, development, implementation
Mainframe (JCL, ISPF, COBOL, CICS)
Database (Oracle, DB2/UDB, SQL Server)
Developers (Java, C#.NET, Web)
more!

Today’s slides are on the web:TodayToday’’s slides are on the web:s slides are on the web:

http://www.kingtraining.com

Thanks for your attention!

▬

Please fill out session Evaluations

