
Oracle8/8i
Differences for Developers:

What you need to know...

Oracle8/8i
Differences for Developers:

What you need to know...

John King
King Training Resources

6341 South Williams Street
Littleton, CO 80121-2627 USA

www.kingtraining.com
800.252.0652 or 303.798.5727

Copyright @ 2000, John Jay King, All rights reserved

ObjectivesObjectives

Learn new Oracle8/8i features geared to developers

Be aware of new non-object features in Oracle8
and Oracle8i

Be aware of new object-oriented features in
Oracle8 and Oracle8i

Learn selected features of Oracle 8i Release 2 (8.1.6)

Non-Object FeaturesNon-Object Features
� Max. size of character columns increased
� New large-object datatype support
� SQL and PL/SQL for large objects and directories
� Deferred constraints
� Read-only views / INSTEAD OF triggers for views
� External Procedures and Advanced Queuing
� Bulk-Bind
� RETURNING clause on UPDATE and DELETE
� CASE statement for conditional SQL
� CUBE and ROLLUP extensions to GROUP BY, �Analytic functions�
� New index types and indexing using functions/expressions
� DDL and Database event triggers
� Materialized views
� PL/SQL invoker rights
� Autonomous transactions
� Temporary Tables
� DBA-oriented new features

Max. Size of Character Cols.Max. Size of Character Cols.

� CHAR columns may now be up to 2000 bytes
long
(old limit was 255 bytes)

� VARCHAR/VARCHAR2 columns may now be up to
4000 bytes long
(old limit was 2000 bytes)

� LONG and LONG RAW remain the same
� Sizes still do not match PL/SQL, potential for

truncation of long values still very real

National-Language CharactersNational-Language Characters
� Oracle8 provides two character datatypes specifically

designed for Unicode-standard multi-byte character data
� NCHAR Fixed length multi-byte

Max. size 2000 bytes
(typically 1000 chars.)

� NVARCHAR2 Var. length multi-byte
Max. size 4000 bytes
(typically 2000 chars.)

� The �national� character set to be used is set by the DBA
when the database is created

LOB SupportLOB Support
� Oracle8 provides four types of Large Objects (LOBs) in

addition to LONG and LONG RAW, each allows storage
of up to 4GB
� BFILE Reference host system file

(BFILE is read-only)
� BLOB Internal binary large object
� CLOB Internal character large object
� NCLOB Internal national character

large object
◆ CREATE TABLE adds a LOB specification to help

describe LOBs

LOB RulesLOB Rules

◆ May have multiple LOB�s in a row
◆ Oracle transaction backup/recovery covers

BLOB, CLOB, and NCLOB
(internal LOBs)

◆ Oracle transaction backup/recovery does not
cover BFILE (external LOB)

◆ BLOB, CLOB, and NCLOB data may be stored
together with table row data, or, a pointer to the
data may be stored

SQL LOB-related FunctionsSQL LOB-related Functions

◆ CLOB and BLOB data may be initialized by
calling EMPTY_CLOB() and
EMPTY_BLOB() respectively

◆ BFILEs may be named using
BFILENAME(�dirname�,�file.nam�)

◆ Generic directories (for portability) may be
created using
CREATE DIRECTORY

PL/SQL Support for LOBsPL/SQL Support for LOBs

� PL/SQL provides a built-in package named DBMS_LOB
for processing and manipulating LOBs allowing three
basic types of processing:
� Read/Examine LOB values (all LOBs)
� Alter values in CLOB, BLOB, or NCLOB
� Read values in a BFILE

◆ Several new PL/SQL exceptions have been created to
handle problems associated with DBMS_LOB activity

◆ PL/SQL manipulation of LOBs is more powerful and
straight-forward than direct SQL manipulation

Deferred ConstraintsDeferred Constraints

� Sometimes working around Referential Integrity
constraints makes logic complex

� Oracle8 lets constraints be DEFERRABLE
� Deferred constraints allow DML to do things that

might normally be disallowed
� Constraints are still enforced at COMMIT
� Constraints may be:

� DEFERRABLE INITIALLY IMMEDIATE
� DEFERRABLE INITIALLY DEFERRED

� ALTER SESSION may be used to defer
constraints (only if marked DEFERRABLE)

INSTEAD OF View TriggersINSTEAD OF View Triggers

◆ To facilitate UPDATE and INSERT logic against
views, Oracle8 provides the INSTEAD OF trigger

CREATE OR REPLACE TRIGGER xxx
 INSTEAD OF INSERT ON myview
 or INSTEAD OF UPDATE
 or INSTEAD OF DELETE

DECLARE
�

BEGIN
�

/* Code to manipulate necessary tables using :NEW values */
�
END;

External ProceduresExternal Procedures
� PL/SQL Version 8 allows external procedures not written

in PL/SQL
� Program is written/purchased and installed as an

executable in the host environment
� Program is a �Dynamic Link� program similar to those

supported by Windows and Solaris
� Net8 (formerly SQL*Net) listener is modified to watch

for the external process
� A LIBRARY is created in Oracle8 (use CREATE

LIBRARY) identifying the path
� A PL/SQL procedure (known as a Wrapper Procedure)

is created to act as an interface
� PL/SQL can execute as a procedure

Advanced QueuingAdvanced Queuing
� Oracle8 Advanced Queuing is more flexible than

DBMS_PIPE and DBMS_ALERT for communicating
between sessions

� Each session ENQUEUEs data into a table using a new
set PL/SQL built-ins
� DBMS_AQ Used to create queue

tables and control who
uses them

� DBMS_AQADM DBMS_AQ.ENQUEUE
& DBMS_AQ.DEQUEUE
to add/remove entries

RETURNING ClauseRETURNING Clause
� The RETURNING clause may be added to INSERT,

UPDATE and DELETE allowing access to values AFTER
the DML statement has completed (and after triggers may
have modified data) saving a network round-trip

UPDATE emp
SET SAL = SAL * 1.1
WHERE JOB = �CLERK�
RETURNING SAL INTO :NEWSAL;

Subqueries Anywhere!Subqueries Anywhere!

◆ Oracle8i allows the use of subqueries just about
anywhere in the SQL statement

◆ Here are four oddball statements that would not
be possible in earlier versions

select ename,job,sal,(select avg(sal) from emp where job = main.job) jobavgsal
from emp main;

select ename,sal from emp
 where sal between (select avg(sal) from emp where job = 'SALESMAN')
 and (select avg(sal) from emp where job = 'ANALYST');
select deptno from dept
 where (select avg(sal) from emp) > (select avg(sal) from emp
 where emp.deptno = dept.deptno);
select ename,sal from emp
 order by (select dname from dept where dept.deptno = emp.deptno),ename;

CASE Expression (8.1.6)CASE Expression (8.1.6)
◆ Oracle has added the CASE expression to allow more

complex processing than DECODE (ANSI/ISO standard)
◆ CASE allows IF�THEN�ELSE logic to be placed

anywhere in SQL that a column or literal can go
◆ CASE syntax is as follows:

CASE WHEN condition1 THEN expression1
 WHEN condition2 THEN expresssion2

 �
 WHEN conditionn THEN expressionn

 ELSE expression
END

◆ One WHEN THEN pair is required, ELSE is optional
(default is NULL), END is required

CASE Example (8.1.6)CASE Example (8.1.6)
select ename,sal,case when job = 'CLERK' then 'GLUE�

 when job = 'MANAGER' then 'SUPER�
 else job
 end job_x
 from emp
 where case when sal < 1000 then sal + 2000
 when sal < 2000 then sal + 1000
 else sal
 end > 2900
 order by case when sal < 1000 then sal + 9000
 when sal < 2000 then sal + 7000
 else sal
 end
ENAME SAL JOB_X
------------ ---------- -----------------
JONES 2975 SUPER
FORD 3000 ANALYST
SCOTT 3000 ANALYST
KING 5000 PRESIDENT
JAMES 950 GLUE

Bulk BindBulk Bind
◆ For years, PL/SQL developers have chafed under the

restriction that SELECT statements returning more than
one row must use a cursor

◆ Pro*C, Pro*COBOL, and Pro*Fortran have allowed
SELECT � INTO arrays for years

◆ Selecting directly into an array avoids the overhead and
network traffic associated with cursors

◆ Bulk bind now allows the processing of arrays via:
� BULK COLLECT added to SELECT, FETCH, and

RETURNING clauses
� New for FORALL process for collections (PL/SQL tables)

BULK COLLECTBULK COLLECT
◆ Fetches all result rows directly into the PL/SQL tables

one operation, removing cursor processing
(works in SELECT, FETCH, and RETURNING)

◆ Careful! Enough memory must be available
declare
 type insal_type is table of many_emps.sal%type
 index by binary_integer;
 type inename_type is table of many_emps.ename%type
 index by binary_integer;
 insal insal_type;
 inename inename_type;
begin
 select ename,sal
 bulk collect into inename,insal
 from many_emps
 where deptno = 10;

FORALLFORALL
◆ FORALL is a new automatically incrementing process for

executing one DML using PL/SQL table values
declare
 type insal_type is table of many_emps.sal%type
 index by binary_integer;
 type inename_type is table of many_emps.ename%type
 index by binary_integer;
 insal insal_type;
 inename inename_type;
begin
 �
 FORALL idx IN inename.FIRST .. inename.LAST
 insert into bonus (ename,sal)
 values (inename(idx),insal(idx));
end;
/

Partition Support in DMLPartition Support in DML

� If an installation is using partitions, DML statements may
refer to a desired partition thus reducing the search time
required to identify rows

� Most partitioned tablespaces use indexes to separate the
partitions by key value

� When an index is being used by Oracle, it will
automatically search only the appropriate partitions

� Careful! Hard-coded partition numbers may create a
maintenance issue...

DELETE FROM xxx PARTITION (yyy) WHERE � ;

Oracle 8.1.6 AggregatesOracle 8.1.6 Aggregates

◆ AVG
◆ CORR
◆ COUNT
◆ COVAR_POP
◆ COVAR_SAMP
◆ GROUPING
◆ MAX
◆ MIN
◆ REGR_AVGX
◆ REGR_AVGY
◆ REGR_COUNT
◆ REGR_INTERCEPT

◆ REGR_R2
◆ REGR_SLOPE
◆ REGR_SXX
◆ REGR_SYY
◆ REGR_SXY
◆ STDDEV
◆ STDDEV_POP
◆ STDDEV_SAMP
◆ SUM
◆ VAR_POP
◆ VAR_SAMP
◆ VARIANCE

Oracle8i Version 2 (8.1.6)
Analytic Functions

Oracle8i Version 2 (8.1.6)
Analytic Functions

◆ Oracle 8.1.6 includes a new set of functions designed to provide
expanded support for data mining operations -
(this topic is too rich to fully cover in the context of this paper)

◆ The analytic functions are divided into four "families"
◆ Lag/Lead Compares values of rows to other rows in same table:

LAG, LEAD
◆ Ranking Supports "top n" queries: CUME_DIST, DENSE_RANK,

NTILE, PERCENT_RANK, RANK, ROW_NUMBER
◆ Reporting Aggregate Compares aggregates to non-aggregates

(pct of total):
RATIO_TO_REPORT

◆ Window Aggregate Moving average type queries:
FIRST_VALUE, LAST_VALUE

◆ The analytic functions allow users to divide query result sets into
ordered groups of rows called partitions
(not the same as database partitions)

Oracle8i Version 2 (8.1.6)
Analytic Function Clauses
Oracle8i Version 2 (8.1.6)
Analytic Function Clauses
◆ Along with the new functions came new clauses

(again, too rich to cover completely here):

analytic_function () OVER (analytic clause)

� Analytic clause
Query_partition_clause-Order_by clause-Windowing clause

� Query partition clause
PARTITION BY list,of,cols

� Windowing clause
RANGE � or ROWS ...

� Order by clause
ORDER BY col,list

CUBE and ROLLUPCUBE and ROLLUP
� CUBE and ROLLUP extend GROUP BY
� ROLLUP builds subtotal aggregates at any level,
 including grand total
� CUBE extends ROLLUP to calculate all possible
 combinations of subtotals for a GROUP BY
� Cross-tabulation reports are easy with CUBE
� Oracle8i Release 2 (Oracle version 8.1.6) began release
 in February 2000, it�s new �Analytic� functions include:
 ranking, moving aggregates, period comparisons,
 ratio of total, and cumulative aggregates

ROLLUP ExampleROLLUP Example
select nvl(to_char(deptno),'Grand') deptid,

nvl(job,'Total') job,
sum(sal) as sal

from emp
group by rollup (deptno,job);

DEPTID JOB SAL
------ --------- ----------
10 CLERK 1300
. . .
10 Total 8750
20 ANALYST 6000
. . .
20 Total 10875
30 CLERK 950
. . .
30 Total 9400
Grand Total 29025

Using GROUPINGUsing GROUPING
select decode(grouping(deptno),1,'All Departments',deptno) deptno

,decode(grouping(job),1,'All Jobs',job) job
,sum(sal) as sal

from emp
group by rollup (deptno,job)

DEPTNO JOB SAL
---------------------------- --------- ----------
10 CLERK 1300
. . .
10 All Jobs 8750
20 ANALYST 6000
. . .
20 All Jobs 10875
30 CLERK 950
. . .
30 All Jobs 9400
All Departments All Jobs 29025

CUBE ExampleCUBE Example
select nvl(to_char(deptno),'Grand') deptid,

nvl(job,'Total') job,
sum(sal) as sal

from emp
group by rollup (deptno,job);

DEPTNO JOB SAL
---------------------------- --------- ----------
10 CLERK 1300
. . .
10 All Jobs 8750
. . .
All Departments ANALYST 6000
All Departments CLERK 4150
All Departments MANAGER 8275
All Departments PRESIDENT 5000
All Departments SALESMAN 5600
All Departments All Jobs 29025

select decode(grouping(deptno),1,'All Departments',deptno) deptno
,decode(grouping(job),1,'All Jobs',job) job
,sum(sal) as sal

from emp
group by cube (deptno,job)

Function/Expression-Based IndexFunction/Expression-Based Index

� Indexes may be defined for column values after
 execution of a function or expression
� This provides the ability to use an index in
 common situations
� Using function/expression indexes requires that the
 transaction have QUERY_REWRITE_ENABLED =TRUE
 and for transactions enabling user-defined functions
 QUERY_REWRITE_INTEGRITY = TRUSTED
CREATE INDEX … ON EMP (UPPER(ENAME)) …
CREATE INDEX … ON NEMP (NVL(SAL,0)+NVL(COMM,0)) …

SELECT … WHERE UPPER(ENAME) = UPPER(:hostvar) …
SELECT … WHERE NVL(SAL,0)+NVL(COMM,0) > 1000 …

DDL and Database TriggersDDL and Database Triggers
◆ DDL triggers fire due to CREATE, ALTER, or DROP statements:

� BEFORE CREATE or AFTER CREATE

� BEFORE ALTER or AFTER ALTER

� BEFORE DROP or AFTER DROP

◆ Database event triggers fire when system-level events occur:

� LOGON

� LOGOFF

� SERVERERROR

� STARTUP

� SHUTDOWN

Materialized ViewsMaterialized Views
◆ Allow a view's results to be stored as materialized in the

database for use by subsequent SQL statements
◆ View materialization is refreshed periodically or upon

demand
◆ Oracle8i Release 2 (8.1.6) allows an ORDER BY clause

create materialized view dept_summary
refresh start with sysdate next sysdate + 1

as
select dname,count(*), nbr_emps,

sum(nvl(sal,0)) tot_sal
from emp,dept
where emp.deptno(+) = dept.deptno
group by dname

Invoker RightsInvoker Rights
◆ By default, stored PL/SQL is executed under the security domain of

the userid used to compile the stored PL/SQL
◆ Occasionally, it might be useful to require the user executing stored

PL/SQL to have the security authorization to perform all actions
contained within the code

◆ Oracle8i provides a new clause on the CREATE statements allowing
control over the security domain used at execution

create procedure xxx (parameter list)
AUTHID DEFINER -- default, works like existing PL/SQL
as � pl/sql block �

create procedure yyy (parameter list)
AUTHID CURRENT_USER -- new with Oracle8i
as � pl/sql block �

Autonomous TransactionsAutonomous Transactions
◆ Autonomous transactions allow a COMMIT/ROLLBACK transaction

sequence within a code block that is not connected to the
COMMIT/ROLLBACK in the outer transaction

◆ Place the following line in the declarative section of any anonymous
PL/SQL block, Procedure, or Function

pragma autonomous_transaction;

Temporary TablesTemporary Tables
◆ Temporary Tables provide a table that is visible to a single

transaction or session

◆ All DML and TRUNCATE TABLE may be used

◆ Indexes and synonyms may be created for them too

◆ Temporary Table definitions may be shared by many transactions
(ON COMMIT DELETE ROWS) or sessions
(ON COMMIT PRESERVE ROWS), but, each transaction or session
gets its own copy of the data

◆ Data is deleted when the transaction or session ends

◆ Transactions generate UNDO information for Temporary Tables, but,
not REDO information

JavaJava
◆ This topic is covered by many other papers, here is a synopsis

◆ Oracle8i includes a Java Virtual Machine specifically engineered by Oracle to
provide multi-threaded support of Java applications instead of having
separate JVMs for each bit of Java

◆ Oracle also supports the creation of stored procedures using Java

◆ Java support for programming includes: Java stored procedures, Enterprise
Java Bean 1.0 support, and support for CORBA 2.0

◆ Java support for SQL includes: JDBC and SQLJ. SQLJ statements are
translated by an SQLJ Preprocessor before Java code is submitted to JDBC

Direct JDBC support is more complex, but, yields more control.

Interesting DBA-Oriented StuffInteresting DBA-Oriented Stuff
◆ Partitioning: Spreads large tables across multiple

files/devices predictably good for very large tables
◆ Reverse-key indexes:Reverses value of keys -- good for

keys with tightly-clustered values
◆ Index-organized tables: Table data stored, in key

sequence (in the key) -- makes speedy �lookup�
◆ ROWID format change: Should not impact most

applications
◆ Direct-path loading from OCI
◆ ALTER TABLE DROP COLUMN/SET UNUSED
◆ Oracle8i Release 2 (8.1.6) adds significant new security

features

Object FeaturesObject Features

◆ User-defined datatypes

◆ Encapsulated attributes and methods

◆ Nested Tables

◆ Varrays

◆ Object tables

◆ Object views

◆ REF and VALUE functions

User-Defined DatatypesUser-Defined Datatypes

◆ Oracle8�s Object option provides the
capability to begin realizing the promise of
object-orientation by making Oracle8 an
Object-Relational Database (ORDBMS)

◆ User-defined datatypes may be as simple
as a group data item, or as complex as
class-type object

User-Defined Object (Create)User-Defined Object (Create)

create or replace type address as object
(house_number number(6),
 street1 varchar2(30),
 street2 varchar2(30),
 city varchar2(20),
 state varchar2(20),
 mailcode varchar2(15),
 country varchar2(20)
);

User-Defined Object (Use)User-Defined Object (Use)

create table purchase_order
(po_number number(6) not null primary key,
 customer_name varchar2(30) not null,
 shipping_address address,
 billing_address address
);

Encapsulated
Attributes & Methods, 1

Encapsulated
Attributes & Methods, 1

create or replace type cust_order_type as object
(po_number number(6),
 customer varchar2(30),
 billing_address address,
 shipping_address address,
 order_date date,
 member function days_old return number,
 pragma restrict_references (days_old,wnds,wnps)
);

Encapsulated
Attributes & Methods, 2

Encapsulated
Attributes & Methods, 2

create or replace type body cust_order_type
 as member function days_old
 return number
is
begin
 return sysdate - order_date;
end days_old;
end;

Nested Tables (Create Type)Nested Tables (Create Type)

◆ Associated data to be stored as a unit
create or replace type deptemp as object
(EMPNO NUMBER(4),
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7,2),
 COMM NUMBER(7,2)
);
/
create or replace type deptemps as table of deptemp;
/

Nested Tables (Create Table)Nested Tables (Create Table)

create table department
(deptno number(2) not null,
 dname varchar2(15),
 loc varchar2(20),
 employees deptemps)
 nested table employees store as emps;

Nested Tables (Use)Nested Tables (Use)

insert into department
 (deptno,dname,loc,employees)
 select deptno,dname,loc,
 cast(multiset(select empno,ename,job,mgr,hiredate,sal,comm

 from emp where deptno = dept.deptno
)

 as deptemps
)

 from dept;

select empno,ename
 from the (select employees from department where deptno = 20);

Varrays (Create Type)Varrays (Create Type)

◆ Varrays might be useful when data occurs a
known number of times

create or replace type deptemp
as object
(EMPNO NUMBER(4),
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7,2),
 COMM NUMBER(7,2)
);

Varrays (Use)Varrays (Use)

create or replace type deptemps as varying array (10) of deptemp;

create table department
(deptno number(2) not null,
 dname varchar2(15),
 loc varchar2(20),
 employees deptemps
);

Object Tables (Create Type)Object Tables (Create Type)

◆ Object tables may be created representing an
object type

create or replace type emp_type
as object
(EMPNO NUMBER(4),
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7,2),
 COMM NUMBER(7,2)
);

Object Tables (Create/Insert)Object Tables (Create/Insert)

create table my_emps of emp_type
(empno primary key not null, hiredate not null);

insert into my_emps
 values (emp_type(1234,'WU','NETHERO'

 ,NULL,sysdate,60000,20000)
);

Object ViewsObject Views

◆ Views may be based upon an object
◆ Object Views allow the use of object technology

with existing relation tables
◆ Five steps to creating an Object View using EMP

data as a nested table:
� Define object identically to relational table
� Define object view using relational table
� Define new object type and object table
� Define view using nested table syntax

Object Views:
Define Object

Object Views:
Define Object

create or replace type jempobj as object
 (EMPNO NUMBER(4),
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7,2),
 COMM NUMBER(7,2),
 DEPTNO NUMBER(2))
/

Object Views:
Define Object View and Object Table

Object Views:
Define Object View and Object Table

create or replace view jemp_obj_view of jempobj
 with object oid (empno) as
 select empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 comm,
 deptno
 from emp
/

create type jemp_n_table as table of jempobj;
/

Object Views:
Define View using Nested Table Syntax

Object Views:
Define View using Nested Table Syntax

create or replace view jemp_o_view (deptno,dname,emptab)
as
 select dept.deptno,dept.dname
 ,cast(multiset
 (select emp.empno
 ,emp.ename
 ,emp.job
 ,emp.mgr
 ,emp.hiredate
 ,emp.sal
 ,emp.comm
 ,emp.deptno
 from emp
 where emp.deptno = dept.deptno)
 as jemp_n_table)
 from dept
/

Object Views:
Use Relational Table via Object View

Object Views:
Use Relational Table via Object View

select ename from
 the (select emptab from jemp_o_view where deptno = 20)
/

◆ This example shows how Object Views can be
created using existing Relational Table data
without changing the existing Relational Table in
any way

◆ Your application can use object technology
without converting your RDBMS!

REF and VALUEREF and VALUE

◆ REF() get the address of an object in the
database

◆ VALUE() returns an entire object rather
than the attributes that make up the object

ConclusionConclusion

◆ Oracle8/8i has many new features of interest to
the application developer

◆ Many important and useful features are available
besides the object-oriented and Java features

◆ Developers can improve applications greatly by
incorporating the new features, at the very least,
we need to know what is possible so we
recognize the new features when they show up
on the job

◆ Oracle8 and Oracle8i are significant
improvements to the database, very promising!

To contact the author:To contact the author:

John King
King Training Resources
6341 South Williams Street
Littleton, CO 80121-2627 USA
1.800.252.0652 - 1.303.798.5727
Email: john@kingtraining.com

