A

Training Resources

Oracle8i Indexing Choices:
Best of Breed

John Jay King

King Training Resources
6341 South Williams Street
Littleton, CO 80121-2627 USA

www.Kingtraining.com
800.252.0652 or 303.798.5727

Copyright @ 2000, John Jay King, All rights reserved

Objectives ﬁ/

 Learn about the many Oracle8i indexing features

* Be aware of the differences between index types
available in Oracle8i:

— B-Tree indexes

— Reverse-key indexes

— Bit-map indexes

— Hash indexes

— Index-Organized Tables

« Understand the performance implications of choosing
one index type over another

e Be familiar with Oracle8i’s ability to use indexes when
functions or expressions are used

Types of Indexes ﬁ/

1 B-Tree (traditional) indexes
1 Hash-cluster indexes

0 Bitmap indexes

1 Index-Organized Tables

1 Reverse-Key indexes

1 Both B-Tree and Bitmap indexes allow
Function/Expression-based indexes

Purpose of Indexes T\v

1 Except for Index-Organized Tables,

INC

exes translate a key value into a rowid

1 Indexes reduce cost of obtaining rows to
the 1/O or calculations necessary to find the
rowid, followed by direct access using the
rowid

1 This Is often faster than reading all possible
rows looking for a match (table scan

ndexing Methods, 1 |

11 B-Tree indexes store key values
sequentially and are traversed from: root
block, to branch block (sometimes multiple
levels of branch blocks), to leaf block, to
data block containing the row

1 Hash-cluster indexes convert the key value
using an algorithm to determine which data
block to read

ndexing Methods, 2

1 Bitmap indexes contain a bit (O or 1) for
each key value that corresponds to every
rowid in the table

1 Index-Organized Tables actually contain
the table row data; once an index value Is
found Iin the index, the data is immediately
available

B-Tree Indexes

0 The original type of index supported by Oracle
IS the B-tree index providing a linked-list type
access using key and the rowid(s)

0 A B-tree index is stored in a hierarchy of pages:
— The first index page is called the “root”
— The “root” points to lower-level “branch” (non-leaf) pages
— Multiple levels of “branch” (non-leaf) pages might exist

— The lowest level index page is called a “leaf” page
containing addresses of data blocks

0 The actual key value is stored (unless using key compression)

0 Concatenated keys can increase the number of index
levels necessary, so, some organizations create keys

0 Indexes require overhead when updating, deleting, or
Inserting rows

B-Tree Index Example

Branch Blocks

Leaf Blocks

Data Blocks

<Brown
Brown
“hatles

Clatlk
Craig
Dawis

Tabho
Dasris
Tatho

Root Block

1dxblkid
idxhlkid
1dxblkid

toud
tord
toud

< larl
latlk
Jathes

Clark
Deng
Hotke

Deng
Feingaold
Gatho

Clatk
Izzard
Feingold

1dxblkid
idxblkid
1dxblkid

1dxblkid
idxblkid
1dxblkid

toud
torid
toud

Jattes

At

Hotke
Izzard
Tahho

Deng
Amith
Hotke

1dxblkid
idxhlkid
1dxblkid

tound
towd
tound

Key Design ﬁ/

1 Key design can cause dense key ranges,
especially when key values are geographic

1 Index paths more densely or sparsely populated
others can lead to deeper levels of index than

would otherwise be needed

0 Index “trees” that are unbalanced may inhibit
performance

— Rebuilding the index will redistribute the levels

— Reverse-Key indexes offer another solution

Reverse Key Indexes ﬁ/

If keys and usage are heavily clustered in a table,
Reverse Key Indexes might speed things up

Oracle says savings will likely be restricted to Parallel-
processing environments, most who have tried it find it
causes problems in non-Parallel environments

A Reverse Key Index is simply a standard index with the
key values stored in reversed form (e.g. ‘1234’ becomes
‘4321’, ‘1235’ becomes ‘5321’), table data is not changed

By reversing key values index blocks might be more
evenly distributed reducing the likelihood of densely or
sparsely populated index paths

Carefully test Reverse-Key indexes to verify benefits,
here’s a direct quote from the Oracle8i Concepts manual:
“Under some circumstances using a reverse-Key index
]g:ar% make an OLTP Oracle Parallel Server application
aster.”

Reverse Key Index: Syntax T\v

1 Syntax to create a Reverse-Key index is to

simply add the word REVERSE after the column

specification
1 Use of Reverse-Key indexes eliminates the
possibility of index range-scan processing

(sequential key values are no longer stored
sequentially in the index)

CREATE | NDEX enpl oyee _ssn_rev
ON enmpl oyee table (ssn) REVERSE

[* ...rest of 1 ndex definition ...

/-

Function/Expression-based T/
Indexes (Oracle8i only) \

1 Until Oracle8i index columns always represented
the actual value of the column and a WHERE
clause needed to specify the original
(unadulterated) column value to use the index

1 Now, an index can represent a column after
some function or expression has been applied

0 If a WHERE clause uses a column value with a
function or expression exactly as specified (case-
Insensitive and blanks are ignored) during index
creation, an index may be used

Creating/Using Function/Expression T{/
Based Index

¢ Creating the index:

CREATE TNDEX ... ON EMP (UPPER(ENAME)) ...
CREATE | NDEX ...ON | NVENTORY (I N _STOCK + ON ORDER) ..

¢ Using the index (if the optimizer agrees...):

SELECT ... FROM EMP
WHERE UPPER(ENAME) = UPPER(: hostvar) ...

SELECT ... FROM | NVENTORY

WHERE | N STOCK + ON ORDER > : LARGE QTY | TEMS ...

These indexes require:

— Cost-based optimization

— Statistics on the function/expression-based index
— Alter session set query_rewrite_enabled = true

— Alter session set query_rewrite_integrity = trusted
(when enabling user-defined functions)

Bitmap Indexes T{/

1 For B-Tree indexes columns with few values over
many rows (low-cardinality) should be avoided

1 Country Code of a customer or Gender of a
customer would make poor index columns due to
the small number of different values in the table

0 Bitmap indexes offer performance improvement
for columns with relatively few values

Bitmap indexes contain the key value and a
bitmap listing the value of O or 1 (yes/no) for each
row indicating whether the row contains that key
value of not

Bitmap Example T\v

¢ For an index of customers in a particular country
(limited In example to: United States (US), United
Kingdom (UK), Japan (JA), and Australia (AU)):

COUNTRY CD=AUO COUNTEY CD=JA COUNTEY CD=UOK COONTEY CD=US

L e R e R B R
DDDHDD|
DI—'-I—'-DDD|
I—'-DDDDI—'-|

¢ Each entry in a bitmap corresponds to a row, a
value of 1 indicates which value that row contains

¢ Bitmaps include all rows, even those with NULL
values (unlike B-Tree indexes)

¢ Bitmaps are usually smaller than B-Tree indexes

Bitmap Issues T\)/

¢ Bitmap indexes work best for equality-type tests (= or IN)

¢ Bitmap indexes are best when used with other indexes

¢ This query improves given bitmap indexes on columns
COUNTRY_CODE, GENDER, and CREDIT_CARD

SELECT CUSTOVER | D, LAST_NAME, BALANCE
FROM NON_GOV_CUSTOMERS
WHERE COUNTRY_CODE IN (‘AU ,’ UK)
AND GENDER = ‘M
AND CREDI T_CARD = ‘ AX ;
Bitmap index maintenance can be expensive; an individual
bit may not be locked, a single update may lock large
portions of the index
Bitmap indexes are best in read-only situations like data

warehouses or where concurrent transactions are unlikely

Hash-Cluster Indexing T{/

¢ B-Tree and Bitmap index keys are used to find
rows requiring I/O to process the index

¢ Hash clusters get rows with a key-based algorithm

¢ Rows are stored together based upon hash value

¢ Oracle or user hashing algorithms may be used

¢ Index size should be known at index creation, it
should allow for distribution of rows with few (no)

collisions when hashing a specific key

- Keys with unique hash values are optimal

- Keys with the same hash value (a collision) may
cause chaining, reducing the benefit of hashing

Hash Index Issues T\v

1 Hash clusters can be the fastest access If:

— Very-high-cardinality columns are used

- Only equal (=) tests are used

- Index values do not change

-~ Number of rows and rows/index values are known
and specified via HASHKEYS at cluster creation time

- Only minimal insert/delete activity will occur

- Key values hash well

1 Only one Hash-cluster is allowed per table

11 To reorganize a Hash-cluster, the index cluster
must be dropped and recreated

1 Carefully test Hash-clusters to verify benefits...

Index-Organized Tables T{/

1 CREATE TABLE’s ORGANIZATION INDEX
clause causes table data to be incorporated into
a B-tree index using the table’s Primary Key

1 Table data is always In order by Primary Key and
many sorts can be avoided by the optimizer

1 Oracle8i adds the abillity to create secondary
Indexes for Index-Organized tables

1 Especially useful for “lookup” type tables

11 Sequential scan of an index-organized table
yields all values in sequence by key

Index-Organized Table Terms T\V

1 To differentiate from Index-Organized Tables,
use “heap organized” to describe traditional
tables

1 The entire Index-Organized Table Is stored in the
Index and has no specific rowid, so, Oracle8I
uses a “virtual rowid” to provide secondary
Indexing capabillity

1 Secondary indexes using “virtual rowid” are
guicker than a scan of the Index-Organized
Table, but, not quite as fast as a traditional
B-Tree secondary index

Index-Organized Table Issues T\v

1 Index-Organized Tables work best when:

— There are few columns in the table/index other than
the key (a “narrow” table)

— Size of a row is small compared to the size of a block

0 Index-Organized columns may not contain LONG
columns, but may contain BLOB, CLOB, or
BFILE data (will probably use index overflow
area mitigating much of the advantage of I0Ts)

1 Index-Organized Tables may not be used in a
CLUSTER

Comparing Index
Strengths and Weaknesses, 1 \

1 For high-cardinality key values, B-tree indexes
are usually best and Hash-clusters might be:

— B-Tree indexes work with all types of comparisons and
gracefully shrink and grow as table data changes

— Hash-clusters work only with equal tests and table
growth is a significant problem

1 For low-cardinality key values that are not
changed by concurrent transactions, Bitmap
Indexes are often superior to B-tree indexes

1 Hash-clusters are not a good choice for low-
cardinality data (many collisions)

Comparing Index T/
Strengths and Weaknesses, 2 \

0 If a key design causes dense or sparse
population of index values in a Parallel-
processing environment, test using
Reverse-key indexes to see if overall
performance Is improved

0 Index-Organized tables are a good choice If:
— Tables have few non-key columns
— Tables have relatively small rows
— Results are frequently sorted by Primary Key

Using Hints to Suggest IndexeST\)/

1 Sometimes, the optimizer may not choose to use
an index, or might not choose to use it as desired

1 Use Hints to control the processing of the SQL by
“Improving” the optimizer’s decisions

11 Use trace information and Explain output when
determining impact of hint

Be careful! Test statements thoroughly before
and after adding Hints

Revisit decisions to use Hints regularly

User-Defined Index Types ﬁ/

1 Oracle8i allows creation of a user-defined index
type to index complex data such as documents,
Images, video clips, spatial data, or audio clips

1 Creation uses object features introduced In
Oracle8 to build indexes specifically designed for
complex applications such as On-Line Analytical
Processing (OLAP)

1 User-defined indexes may be used with user
defined operators (CREATE OPERATOR)

1 Specifics concerning User-Defined Index Types
may be found in the Oracle8i Concepts manual,
no further discussion is provided in this paper

Conclusion T\)/

1 Indexing capabillities of Oracle8i are powerful and
system developers should decide not just what
columns to index but how to index them

1 This paper presented various indexing options
available and suggested when choosing a
particular type of index might be the best choice

1 As with all performance related issues, test, test,
and test again

1 Any performance oriented decision must be
revisited periodically to make sure that the best
choice is still being made

A

Training Resources

To contact the author:

John King

King Training Resources

6341 South Williams Street
Littleton, CO 80121-2627 USA
1.800.252.0652 - 1.303.798.5727
Email: john@kingtraining.com

