
Oracle8i Indexing Choices:
Best of Breed

Oracle8i Indexing Choices:
Best of Breed

John Jay King
King Training Resources

6341 South Williams Street
Littleton, CO 80121-2627 USA

www.kingtraining.com
800.252.0652 or 303.798.5727

Copyright @ 2000, John Jay King, All rights reserved

ObjectivesObjectives

• Learn about the many Oracle8i indexing features

• Be aware of the differences between index types
 available in Oracle8i:

– B-Tree indexes
– Reverse-key indexes
– Bit-map indexes
– Hash indexes
– Index-Organized Tables

• Understand the performance implications of choosing
 one index type over another
• Be familiar with Oracle8i’s ability to use indexes when
 functions or expressions are used

Types of IndexesTypes of Indexes

◆ B-Tree (traditional) indexes
◆ Hash-cluster indexes
◆ Bitmap indexes
◆ Index-Organized Tables
◆ Reverse-Key indexes
◆ Both B-Tree and Bitmap indexes allow

Function/Expression-based indexes

Purpose of IndexesPurpose of Indexes
◆ Except for Index-Organized Tables,

indexes translate a key value into a rowid

◆ Indexes reduce cost of obtaining rows to
the I/O or calculations necessary to find the
rowid, followed by direct access using the
rowid

◆ This is often faster than reading all possible
rows looking for a match (table scan

Indexing Methods, 1Indexing Methods, 1

◆ B-Tree indexes store key values
sequentially and are traversed from: root
block, to branch block (sometimes multiple
levels of branch blocks), to leaf block, to
data block containing the row

◆ Hash-cluster indexes convert the key value
using an algorithm to determine which data
block to read

Indexing Methods, 2Indexing Methods, 2

◆ Bitmap indexes contain a bit (0 or 1) for
each key value that corresponds to every
rowid in the table

◆ Index-Organized Tables actually contain
the table row data; once an index value is
found in the index, the data is immediately
available

B-Tree IndexesB-Tree Indexes
◆ The original type of index supported by Oracle
 is the B-tree index providing a linked-list type
 access using key and the rowid(s)
◆ A B-tree index is stored in a hierarchy of pages:

– The first index page is called the “root”
– The “root” points to lower-level “branch” (non-leaf) pages
– Multiple levels of “branch” (non-leaf) pages might exist
– The lowest level index page is called a “leaf” page
 containing addresses of data blocks

◆ The actual key value is stored (unless using key compression)
◆ Concatenated keys can increase the number of index
 levels necessary, so, some organizations create keys
◆ Indexes require overhead when updating, deleting, or
 inserting rows

B-Tree Index ExampleB-Tree Index Example

Key DesignKey Design

◆ Key design can cause dense key ranges,
especially when key values are geographic

◆ Index paths more densely or sparsely populated
others can lead to deeper levels of index than
would otherwise be needed

◆ Index “trees” that are unbalanced may inhibit
performance
– Rebuilding the index will redistribute the levels
– Reverse-Key indexes offer another solution

Reverse Key IndexesReverse Key Indexes
◆ If keys and usage are heavily clustered in a table,

Reverse Key Indexes might speed things up
◆ Oracle says savings will likely be restricted to Parallel-

processing environments, most who have tried it find it
causes problems in non-Parallel environments

◆ A Reverse Key Index is simply a standard index with the
key values stored in reversed form (e.g. ‘1234’ becomes
‘4321’, ‘1235’ becomes ‘5321’), table data is not changed

◆ By reversing key values index blocks might be more
evenly distributed reducing the likelihood of densely or
sparsely populated index paths

◆ Carefully test Reverse-Key indexes to verify benefits,
here’s a direct quote from the Oracle8i Concepts manual:
“Under some circumstances using a reverse-key index
can make an OLTP Oracle Parallel Server application
faster.”

Reverse Key Index: SyntaxReverse Key Index: Syntax

◆ Syntax to create a Reverse-Key index is to
simply add the word REVERSE after the column
specification

◆ Use of Reverse-Key indexes eliminates the
possibility of index range-scan processing
(sequential key values are no longer stored
sequentially in the index)

CREATE INDEX employee_ssn_rev
ON employee_table (ssn) REVERSE
/* … rest of index definition … */;

Function/Expression-based
Indexes (Oracle8i only)

Function/Expression-based
Indexes (Oracle8i only)

◆ Until Oracle8i index columns always represented
the actual value of the column and a WHERE
clause needed to specify the original
(unadulterated) column value to use the index

◆ Now, an index can represent a column after
some function or expression has been applied

◆ If a WHERE clause uses a column value with a
function or expression exactly as specified (case-
insensitive and blanks are ignored) during index
creation, an index may be used

Creating/Using Function/Expression
Based Index

Creating/Using Function/Expression
Based Index

� Creating the index:

SELECT … FROM EMP
WHERE UPPER(ENAME) = UPPER(:hostvar) …

SELECT … FROM INVENTORY
WHERE IN_STOCK + ON_ORDER > :LARGE_QTY_ITEMS …

CREATE INDEX … ON EMP (UPPER(ENAME)) …
CREATE INDEX … ON INVENTORY (IN_STOCK + ON_ORDER) …

◆ These indexes require:
– Cost-based optimization
– Statistics on the function/expression-based index
– Alter session set query_rewrite_enabled = true
– Alter session set query_rewrite_integrity = trusted

(when enabling user-defined functions)

� Using the index (if the optimizer agrees…):

Bitmap IndexesBitmap Indexes
◆ For B-Tree indexes columns with few values over

many rows (low-cardinality) should be avoided
◆ Country Code of a customer or Gender of a

customer would make poor index columns due to
the small number of different values in the table

◆ Bitmap indexes offer performance improvement
for columns with relatively few values

◆ Bitmap indexes contain the key value and a
bitmap listing the value of 0 or 1 (yes/no) for each
row indicating whether the row contains that key
value of not

Bitmap ExampleBitmap Example
� For an index of customers in a particular country

(limited in example to: United States (US), United
Kingdom (UK), Japan (JA), and Australia (AU)):

� Each entry in a bitmap corresponds to a row, a
value of 1 indicates which value that row contains

� Bitmaps include all rows, even those with NULL
values (unlike B-Tree indexes)

� Bitmaps are usually smaller than B-Tree indexes

Bitmap IssuesBitmap Issues
� Bitmap indexes work best for equality-type tests (= or IN)
� Bitmap indexes are best when used with other indexes
� This query improves given bitmap indexes on columns
 COUNTRY_CODE, GENDER, and CREDIT_CARD

� Bitmap index maintenance can be expensive; an individual
 bit may not be locked, a single update may lock large
 portions of the index
� Bitmap indexes are best in read-only situations like data
 warehouses or where concurrent transactions are unlikely

SELECT CUSTOMER_ID, LAST_NAME, BALANCE
FROM NON_GOV_CUSTOMERS
WHERE COUNTRY_CODE IN (‘AU’,’UK’)

AND GENDER = ‘M’
AND CREDIT_CARD = ‘AX’;

Hash-Cluster IndexingHash-Cluster Indexing
� B-Tree and Bitmap index keys are used to find
 rows requiring I/O to process the index
� Hash clusters get rows with a key-based algorithm
� Rows are stored together based upon hash value
� Oracle or user hashing algorithms may be used
� Index size should be known at index creation, it
 should allow for distribution of rows with few (no)
 collisions when hashing a specific key

– Keys with unique hash values are optimal
– Keys with the same hash value (a collision) may
 cause chaining, reducing the benefit of hashing

Hash Index IssuesHash Index Issues
◆ Hash clusters can be the fastest access if:

– Very-high-cardinality columns are used
– Only equal (=) tests are used
– Index values do not change
– Number of rows and rows/index values are known
 and specified via HASHKEYS at cluster creation time
– Only minimal insert/delete activity will occur
– Key values hash well

◆ Only one Hash-cluster is allowed per table
◆ To reorganize a Hash-cluster, the index cluster
 must be dropped and recreated
◆ Carefully test Hash-clusters to verify benefits...

Index-Organized TablesIndex-Organized Tables

◆ CREATE TABLE’s ORGANIZATION INDEX
clause causes table data to be incorporated into
a B-tree index using the table’s Primary Key

◆ Table data is always in order by Primary Key and
many sorts can be avoided by the optimizer

◆ Oracle8i adds the ability to create secondary
indexes for Index-Organized tables

◆ Especially useful for “lookup” type tables
◆ Sequential scan of an index-organized table

yields all values in sequence by key

Index-Organized Table TermsIndex-Organized Table Terms

◆ To differentiate from Index-Organized Tables,
use “heap organized” to describe traditional
tables

◆ The entire Index-Organized Table is stored in the
index and has no specific rowid, so, Oracle8i
uses a “virtual rowid” to provide secondary
indexing capability

◆ Secondary indexes using “virtual rowid” are
quicker than a scan of the Index-Organized
Table, but, not quite as fast as a traditional
B-Tree secondary index

Index-Organized Table IssuesIndex-Organized Table Issues

◆ Index-Organized Tables work best when:
– There are few columns in the table/index other than

the key (a “narrow” table)
– Size of a row is small compared to the size of a block

◆ Index-Organized columns may not contain LONG
columns, but may contain BLOB, CLOB, or
BFILE data (will probably use index overflow
area mitigating much of the advantage of IOTs)

◆ Index-Organized Tables may not be used in a
CLUSTER

Comparing Index
Strengths and Weaknesses, 1

Comparing Index
Strengths and Weaknesses, 1

◆ For high-cardinality key values, B-tree indexes
are usually best and Hash-clusters might be:
– B-Tree indexes work with all types of comparisons and

gracefully shrink and grow as table data changes
– Hash-clusters work only with equal tests and table

growth is a significant problem

◆ For low-cardinality key values that are not
changed by concurrent transactions, Bitmap
indexes are often superior to B-tree indexes

◆ Hash-clusters are not a good choice for low-
cardinality data (many collisions)

Comparing Index
Strengths and Weaknesses, 2

Comparing Index
Strengths and Weaknesses, 2

◆ If a key design causes dense or sparse
population of index values in a Parallel-
processing environment, test using
Reverse-key indexes to see if overall
performance is improved

◆ Index-Organized tables are a good choice if:
– Tables have few non-key columns
– Tables have relatively small rows
– Results are frequently sorted by Primary Key

Using Hints to Suggest IndexesUsing Hints to Suggest Indexes

◆ Sometimes, the optimizer may not choose to use
an index, or might not choose to use it as desired

◆ Use Hints to control the processing of the SQL by
“improving” the optimizer’s decisions

◆ Use trace information and Explain output when
determining impact of hint

◆ Be careful! Test statements thoroughly before
and after adding Hints

◆ Revisit decisions to use Hints regularly

User-Defined Index TypesUser-Defined Index Types

◆ Oracle8i allows creation of a user-defined index
type to index complex data such as documents,
images, video clips, spatial data, or audio clips

◆ Creation uses object features introduced in
Oracle8 to build indexes specifically designed for
complex applications such as On-Line Analytical
Processing (OLAP)

◆ User-defined indexes may be used with user
defined operators (CREATE OPERATOR)

◆ Specifics concerning User-Defined Index Types
may be found in the Oracle8i Concepts manual,
no further discussion is provided in this paper

ConclusionConclusion
◆ Indexing capabilities of Oracle8i are powerful and

system developers should decide not just what
columns to index but how to index them

◆ This paper presented various indexing options
available and suggested when choosing a
particular type of index might be the best choice

◆ As with all performance related issues, test, test,
and test again

◆ Any performance oriented decision must be
revisited periodically to make sure that the best
choice is still being made

To contact the author:To contact the author:

John King
King Training Resources
6341 South Williams Street
Littleton, CO 80121-2627 USA
1.800.252.0652 - 1.303.798.5727
Email: john@kingtraining.com

