
1

2

Presented by: John Jay King
King Training Resources - john@kingtraining.com

Download this paper from: http://www.kingtraining.com

Copyright @ 2010, John Jay King

New Features in
PL/SQL for Oracle 11g

3

Session Objectives

• Learn new Oracle 11g features that are
geared to PL/SQL developers

• Use new PL/SQL features in Oracle 11g

4

Who Am I?
• John King – Partner, King Training Resources
• Providing training to Oracle and IT community for

over 20 years – http://www.kingtraining.com
• “Techie” who knows Oracle, SQL, Java, and

PL/SQL pretty well (along with many other topics)
• Leader in Service Oriented Architecture (SOA)

design and implementation
• Home is Centennial, Colorado – I love it here!
• Member of ODTUG Board of Directors
• Active member of Rocky Mountain Oracle Users

Group (RMOUG)

5

Oracle 11g R1

• Environment changes
• XML enhancements
• New/improved SQL statements
• New features in PL/SQL
• SQL & PL/SQL Results Caches
• Java, JDBC, and SQLJ improvements
• Pro* and OCI enhancements

6

Oracle 11g R2

• Results Cache Improvements
• New Analytic Functions
• XML Enhancements
• Java Enhancements
• Pro*C/Pro*COBOL Enhancements
• Edition-Based Redefinition (EBR)

7

Oracle 11g PL/SQL

• Oracle 11g has brought many interesting
changes to PL/SQL including:
– Use of new SQL functionality such as

XMLType, BLOB, and Regular Expressions
– PL/SQL compiler improvements
– Trigger improvements (compound and follows)
– PL/SQL result cache
– continue statement
– Sequence number ease of use
– New data types
– Improved CALL syntax

8

PL/SQL Result Cache
• PL/SQL allows specification of a result_cache for

function/procedure calls
• Add the clause “result_cache” just before the

“AS/IS” keyword in the Function and/or
Procedure definition
(Oracle 11g R1 also used now-obsolete
“relies_on” clause)

• The results of a call to the Function or Procedure
with a specific set of input parameters is stored
for later re-use

9

PL/SQL Result Cache - Code
CREATE OR REPLACE FUNCTION RESULT_CACHE_ON

(in_cust_id sh.customers.cust_id%type, in_prod_id
sh.sales.prod_id%type)

RETURN number
RESULT_CACHE -- RELIES_ON (SH.CUSTOMERS, SH.SALES)
authid definer
AS
sales number(7,0);
BEGIN
select count(*) nbr_sales into sales
from sh.customers cust join sh.sales sales

on cust.cust_id = sales.cust_id
where cust.cust_id = in_cust_id
and prod_id = in_prod_id;

return sales;
EXCEPTION
when no_data_found then return 0;

END RESULT_CACHE_ON;

10

PL/SQL Result Cache - Timings
1* select result_cache_on(4977,120) from dual
RESULT_CACHE_ON(4977,120)

14
Elapsed: 00:00:00.40

1* select result_cache_on(4977,120) from dual
RESULT_CACHE_ON(4977,120)

14
Elapsed: 00:00:00.00

1* select result_cache_on(4977,120) from dual
RESULT_CACHE_ON(4977,120)

14
Elapsed: 00:00:00.01

11

• In previous releases, the PL/SQL compiler
required a standalone “C” compiler

• Oracle 11g now provides a native compiler for
PL/SQL eliminating the need for a separate
compiler
CREATE…
COMPILE PLSQL_CODE_TYPE=NATIVE …

CREATE…
COMPILE PLSQL_CODE_TYPE=INTERPRETED …

Compiler Enhancement

12

Compound Triggers
• Compound triggers allow the same code to be

shared across timing points (previously
accomplished using packages most of the time)

• Compound triggers have unique declaration and
code sections for timing point

• All parts of a compound trigger share a common
state that is initiated when the triggering
statement starts and is destroyed when the
triggering statement completes (even if an error
occurs)

13

Compound Trigger Timing

• If multiple compound triggers exist for the
same table; they fire together:
– All before statement code fires first
– All before row code fires next
– All after row code fires next
– All after statement code finishes

• The sequence of trigger execution can be
controlled only using the FOLLOWS clause

14

Compound Trigger Syntax

CREATE TRIGGER compound_trigger
FOR UPDATE OF sal ON emp
COMPOUND TRIGGER

-- Global Declaration Section
BEFORE STATEMENT IS
BEGIN …
BEFORE EACH ROW IS
BEGIN …
AFTER EACH ROW IS
BEGIN …

END compound_trigger;
/

15

TRIGGER … FOLLOWS

• Oracle 11g adds the “FOLLOWS” clause to
trigger creation allowing control over the
sequence of execution when multiple triggers
share a timing point

• FOLLOWS indicates the including trigger should
happen after the named trigger(s); the named
trigger(s) must already exist

• If some triggers use “FOLLOWS” and others do
not; only the triggers using “FOLLOWS” are
guaranteed to execute in a particular sequence

16

How FOLLOWS Works
• FOLLOWs only distinguishes between triggers at

the same timing point:
– BEFORE statement
– BEFORE row
– AFTER row
– AFTER statement
– INSTEAD OF

• In the case of a compound trigger, FOLLOWS
applies only to portions of triggers at the same
timing point (e.g. if a BEFORE ROW simple
trigger names a compound trigger with
FOLLOWS the compound trigger must have a
BEFORE ROW section and vice versa)

17

FOLLOWS Syntax
CREATE OR REPLACE TRIGGER myTrigger

BEFORE/AFTER/INSTEAD OF someEvent
FOR EACH ROW
FOLLOWS someschema.otherTrigger
WHEN (condition=true)
/* trigger body */

• FOLLOWS may specify a list (and designate sequence)
FOLLOWS otherTrigger1, otherTrigger2, etc

18

New PL/SQL Datatypes

• Oracle 11g adds three new PL/SQL datatypes:
Simple_integer, Simple_float, Simple_double
– Types use native compilation producing faster

arithmetic via direct hardware implementation
– SIMPLE_INTEGER provides a binary integer

that is neither checked for nulls nor overflows
– SIMPLE_INTEGER values may range from

-2147483648 to 2147483647 and is always NOT
NULL

– Likewise, SIMPLE_FLOAT & SIMPLE_DOUBLE
do not use null or overflow checks

19

Example SIMPLE_INTEGER
declare
-- mytestvar pls_integer := 2147483645;

mytestvar simple_integer := 2147483645;
begin

loop
mytestvar := mytestvar + 1;
dbms_output.put_line('Value of mytestvar is now '

|| mytestvar);
exit when mytestvar < 10;

end loop;
end;
Results in:
Value of mytestvar is now 2147483646
Value of mytestvar is now 2147483647
Value of mytestvar is now -2147483648

20

• If the “mytestvar” variable is switched to
PLS_INTEGER, an ORA-1426 NUMERIC
OVERFLOW exception occurs

Error report:
ORA-01426: numeric overflow
ORA-06512: at line 7
01426. 00000 - "numeric overflow"
*Cause: Evaluation of an value expression causes
an overflow/underflow.
*Action: Reduce the operands.
Value of mytestvar is now 2147483646
Value of mytestvar is now 2147483647

Without SIMPLE_INTEGER

21

• Sequence values NEXTVAL and CURRVAL may
be use in PL/SQL assignment statement

myvar := myseq.nextval;

Sequences in PL/SQL

22

• CONTINUE “iterates” a loop; branching over the rest of the
code in the loop and returning to the loop control statement
begin

dbms_output.put_line('Counting down to blastoff!');
for loopctr in reverse 1 .. ctr loop
if loopctr in (4,2) then

continue;
end if;
dbms_output.put_line(to_char(loopctr));

end loop;
dbms_output.put_line('Blast Off!');

end;
Counting down to blastoff!
6
5
3
1
Blast Off!

CONTINUE

<-Values “4” and “2” do not appear in the output

23

• REGEXP_COUNT counts the number of times a pattern
occurs in a source string
select ename,regexp_count(ename,'l',1,'i') from emp;
SMITH 0
ALLEN 2
WARD 0
JONES 0
MARTIN 0
BLAKE 1
/** more rows ***/
MILLER 2
– String expression and/or column to match pattern
– Regular Expression pattern
– Beginning position in the source string (default=1)
– Match parameters (i = case insensitive, c = case sensitive, m = multiple

line source delimited by ‘^’ or ‘$’, n = matches ‘.’ newline characters
(default no), and x = ignore whitespace characters (default is to match)

REGEXP_COUNT

24

• PL/SQL allows function and procedure parameters to be
specified in two ways; by position and by name

• With Oracle 11g SQL, parameter types may now be mixed
• Given the following function:

CREATE OR REPLACE
FUNCTION TEST_CALL (inval1 IN NUMBER, inval2 IN
NUMBER,

inval3 IN NUMBER) RETURN NUMBER AS
BEGIN

RETURN inval1 + inval2 + inval3;
END TEST_CALL;

• The following calls all now work:
test_call(vara,varb,varc)
test_call(inval3=>varc,inval1=>vara,inval2=>varb)
test_call(vara,inval3=>varc,inval2=>varb)

CALL with Mixed Parameters

25

Non-Oracle PL/SQL

• Microsoft .NET and Visual Studio .NET
(Visual Studio .NET 2008, 2005, & 2003)
– PL/SQL Debugging in Visual Studio .NET
– Designer and integration using Data Windows

via Visual Studio .NET DDEX
– Oracle Data Provider for .NET (ODP.NET)
– .NET stored procedures

(Oracle 11g on Windows)

26

Wrapping it all Up

• Oracle 11g adds significant new
functionality to the already robust PL/SQL

• Developers will obtain better performance
through the incorporation of improved
PL/SQL compiler and result caching

• Developers will find development easier
due to the improvements in syntax,
datatypes, and triggers provided by
Oracle 11g

27

28

New Features in PL/SQL
for Oracle 11g

To contact the author:
John King
King Training Resources
6341 South Williams Street
Littleton, CO 80121-2627 USA
1.800.252.0652 - 1.303.798.5727
Email: john@kingtraining.com Today’s slides and examples are on the web:Today’s slides and examples are on the web:

http://www.kingtraining.com
http://www.odtug.com

Thanks for your attention!

29

