
Feb 2003 Copyright @ 2003, John Jay King Page 1

Making Oracle and SQLJ 
Work For You

Presented to: 
RMOUG Training Days 2003

John King
King Training Resources

6341 South Williams Street
Littleton, CO 80121-2627 USA

www.kingtraining.com
800.252.0652 or 303.798.5727



Feb 2003 Copyright @ 2003, John Jay King Page 2

Session Objectives

• Understand how to use SQLJ to access 
Oracle data

• Know the different types of Oracle 
connections supported

• Be able to query data from Oracle using 
SQLJ

• Use an Oracle stored procedure via SQLJ



Feb 2003 Copyright @ 2003, John Jay King Page 3

Major Keywords

• Connection
• Statement 
• Result Set
• Thin Client
• OCI Client



Feb 2003 Copyright @ 2003, John Jay King Page 4

SQLJ Process



Feb 2003 Copyright @ 2003, John Jay King Page 5

Oracle and Java

• Oracle9i and Oracle8i provide a Java Virtual Machine 
(JVM) built in to the database

• Oracle provides JDBC drivers to allow Java to use the 
database

• Oracle provides an SQLJ translator allowing the use of 
embedded SQL in Java

• JDeveloper is an Integrated Development Environment 
(IDE) that may be used to create Java programs using 
JDBC or SQLJ

• Common Object Request Broker Architecture (CORBA) 
support

• Oracle Application Server (Oracle9i AS)
• Support for JavaBeans and EJB



Feb 2003 Copyright @ 2003, John Jay King Page 6

Database Connectivity with JDBC

• JDBC is a tool used to access SQL databases 
from Java

• Oracle JDBC drivers support JDBC 1.22 fully
• All of JDBC 2.0 and parts of JDBC 3.0 (the current 

release) are supported by Oracle9i JDBC or by 
Oracle extensions

• JDBC allows programmers to:
– Connect to a database
– Query and Update a database
– Perform PL/SQL and call stored Procedures/Functions

• JDBC programs are database vendor and platform 
independent (mostly) unless Oracle-specific 
features are used



Feb 2003 Copyright @ 2003, John Jay King Page 7

JDBC Drivers

• Oracle support three types of JDBC drivers:
– Oracle Thin JDBC driver

• Does not require Oracle client 
• Creates its own Oracle Net/Net8/SQL*Net connection
• Downloadable (about 900k)
• Used for Applets

– Oracle OCI JDBC driver
• Requires Oracle Client
• Uses existing Oracle Net/Net8/SQL*Net connection
• Used for Applications on client and middle-tier applications

– Oracle Server JDBC driver (aka KPRB driver)
• Server-side only
• Used for server-side JDBC, Java stored procedures, and 

Enterprise Java Beans (EJBs)
• Supports communication between PL/SQL and Java



Feb 2003 Copyright @ 2003, John Jay King Page 8

Which Driver for Me?

• Use the Thin JDBC driver for:
– Applets
– Most applications
– TCP/IP connections only

• Use the OCI JDBC driver for:
– Applications requiring the best performance?
– Connections not using TCP/IP

• Use the Server-side JDBC driver for:
– Accessing other databases from within the database

(requires Oracle 8.1.7 or later)
• Use the Server-side Internal JDBC driver for:

– Programs running in the server, accessing the server 
(requires Oracle 8.1.5 or later)



Feb 2003 Copyright @ 2003, John Jay King Page 9

What Database Version?

• Thin JDBC drivers and OCI JDBC drivers work 
with:
– Oracle 9.2.x
– Oracle 9.0.x
– Oracle 8.1.x
– Oracle 8.0.x (no support for objects)
– Oracle 7.x (no support for objects or LOBs)

• Oracle Server JDBC Internal drivers became 
available with Oracle 8.1.5 but can access data 
in Oracle 8.1.4

• Oracle Server-side Thin driver became available 
in 8.1.7



Feb 2003 Copyright @ 2003, John Jay King Page 10

Oracle JDBC Features 

• Oracle’s JDBC drivers add several features to the 
standard Java JDBC
– JDBC 1.22 compliant, supports most JDBC 2.0 and 

parts of JDBC 3.0
– Supports object-relational data
– Supports LOB data
– Provides Oracle-specific performance features
– Allows use of PL/SQL and Java stored procedures
– Supports all Oracle character sets

• Once a connection has been established, JDBC 
works the same regardless of driver being used



Feb 2003 Copyright @ 2003, John Jay King Page 11

JDBC Drivers

• JDBC drivers for Oracle must be available for 
compilation and testing, they come in two files:
– classes111.zip Java 1.1
– classes12.zip Java 1.2, 1.3, 1.4
– ojdbc14.jar Java 1.4
– Two additional sets of drivers may be added for 

installations using Oracle NLS features:
– nls_charset11.zip Java 1.1.x NLS characters
– nsl_charset12.zip Java 1.2, 1.3, 1.4 NLS characters

• Make sure that ONLY ONE SET of these zip/jar 
files is in your CLASSPATH 

• Zip files may be found in directory:
<ORACLE_HOME>/jdbc/lib



Feb 2003 Copyright @ 2003, John Jay King Page 12

Using JDBC

1. Import java.sql.* and other needed packages
2. Load/register the JDBC driver
3. Connect to the database using JDBC
4. Create a statement object
5. Execute SQL statements and process results
6. Close the result set 

(technically not required, but safest to avoid 
memory leak issues)

7. Close the statement
8. Close the connection 

(disconnect from database)



Feb 2003 Copyright @ 2003, John Jay King Page 13

Load/register JDBC driver

• This is one of the two parts of JDBC that is 
most impacted by switching database vendors

• Make sure that the JDBC driver has been made 
available to the JVM (in the classpath)

• Make sure the most current driver is used
• Connect using one of two mechanisms:

DriverManager.registerDriver(
new oracle.jdbc.driver.OracleDriver());

or

Class.forName("oracle.jdbc.driver.OracleDriver");



Feb 2003 Copyright @ 2003, John Jay King Page 14

Connect to the Database

• Connections are the other part of JDBC that is 
vendor-dependent, Oracle’s connection string 
varies depending upon the driver in use

• A DBA's (DataBase Administrator's) help may 
be required to properly format the connect 
string and identify the appropriate settings

• It is a bad idea to hard-code userid and 
password information in code as shown in these 
examples, be sure to prompt the current user 
for the necessary information

• Be sure to close the connection, this is code 
that is often placed in a finally block



Feb 2003 Copyright @ 2003, John Jay King Page 15

Connection Object

• Thin client connection
– jdbc:oracle:thin:@**hostcomputer**:**port**:**oraclesid**
String url = "jdbc:oracle:thin:@tecra:1521:tec817";
String uID = "scott"; // prompt user for this
String uPswd = "tiger"; // prompt user for this
Connection conn = 

DriverManager.getConnection(url,uID,uPswd);

• OCI client connection
– jdbc:oracle:oci8:@**oraclesid**
String url = "jdbc:oracle:oci8:@tec817"; 
String uID = "scott"; // prompt user for this
String uPswd = "tiger"; // prompt user for this
Connection conn =

DriverManager.getConnection(url,uId,uPswd);



Feb 2003 Copyright @ 2003, John Jay King Page 16

Internal Connection

• Internal database connections used by Java 
Stored Procedures are simpler:

Conn = DriverManager.getConnection("jdbc:default:connection:");



Feb 2003 Copyright @ 2003, John Jay King Page 17

Connection Pools

• Creating and destroying database connections is 
one of the most expensive operations JDBC 
performs

• Performance may sometimes be improved 
dramatically by using “Connection Pools”

• Connection Pools represent a set of existing 
database connections that application programs 
share, eliminating the cost of create/destroy each 
time a program touches the database

• Creating and managing Connection Pools is often 
the province of the DBA staff, though, 
applications may create them manually



Feb 2003 Copyright @ 2003, John Jay King Page 18

More on Connection Pools

• With Connection Pools the Application Server 
opens a given number of Connections to the 
database (dependent upon system configuration) 
and Java programs share them via
ConnectionPool

• Caching the Connection objects provides 
significant performance improvements

• Connection Pools take advantage of JDBC 2.0's 
JNDI (Java Naming and Directory Interface) 
technology using ConnectionPoolDataSource,
DataSource, and PooledConnection interfaces



Feb 2003 Copyright @ 2003, John Jay King Page 19

Using Connection Pools

• As with normal Connections, Connection Pool 
implementations tend to be vendor-specific; many 
people find it useful to use a “Connection Factory” 
as part of framework to make the database vendor 
transparent to the Java programs

• The use of a “Connection Factory” encapsulates 
(hides) the complexity of the pool connection and 
looks to the JDBC/SQLJ developer like just another 
database connection

• A common mistake made by developers is failing to 
close() the pooled connection, closing the 
connection makes the pooled connection available 
for reuse (close() is polymorphic!)



Feb 2003 Copyright @ 2003, John Jay King Page 20

Connect Using Pool
try {

// Retrieve the DataSource using logical JNDI name
ctx = new InitialContext(env);
ds = (DataSource) ctx.lookup("jdbc/mysample");

} 
catch (NamingException eName) {

System.out.println("Error in lookup jdbc/mysample");
System.exit(0);

}
try {

conn = ds.getConnection(); // NOT DriverManager
// ** database access code goes here

}
catch (SQLException e) {

// SQL exception code
}



Feb 2003 Copyright @ 2003, John Jay King Page 21

Create a Statement Object

• The Statement object contains the SQL statement 
to be executed

• For maximum portability use generic SQL
• For maximum performance/flexibility, it might be 

necessary to use Oracle-specific SQL and 
OracleStatement object

• Be sure to close the Statement object, this is code 
often found in a finally block



Feb 2003 Copyright @ 2003, John Jay King Page 22

Statement Object

• Standard JDBC Statement:

Statement stmt = conn.createStatement ();

• Oracle-specific Statement:

OracleStatement stmt = conn.createStatement ();



Feb 2003 Copyright @ 2003, John Jay King Page 23

PreparedStatement Object

• Standard JDBC Statements:
PreparedStatement stmt =

conn.prepareStatement("update emp set sal = ? "
+  " where empno = ? ");

stmt.setBigDecimal(1,1234.56);
stmt.setInt(2,7788);
nbrRows = stmt.executeUpdate();

• Oracle-specific Statements:
PreparedStatement stmt =

conn.prepareStatement("update emp set sal = ? "
+  " where empno = ? ");

((OraclePreparedStatement)stmt).setDouble(1,1234.56);
((OraclePreparedStatement)stmt).setInt(2,7788);
nbrRows = stmt.executeUpdate();



Feb 2003 Copyright @ 2003, John Jay King Page 24

Result Set

• Immediately after a query, the result set pointer 
points one record before the first row returned, 
use the next method to get the first record

• It is not normally necessary to manually close the 
Result Set, it will be closed automatically when 
the Statement it is associated with is closed or re-
executed

• Due to memory-leak issues, it may be safest to 
close the Result Set 



Feb 2003 Copyright @ 2003, John Jay King Page 25

Execute SQL Statements

• To execute a query:

String mySql = "SELECT ENAME,JOB,DEPTNO, "
+ " to_char(HIREDATE,'MM/DD/YYYY') HIREDATE " 
+ " FROM EMP "
+ " WHERE DEPTNO = '" + myParm + "'"
+ " ORDER BY ENAME";

ResultSet rs = stmt.executeQuery(mySQL);

• To execute an update or stored procedure call:

String mySQL = "UPDATE EMP SET SAL = SAL * 1.06 "
+ " WHERE ROWID = '" + saveRowId + "'";

int nbrRows = stmt.executeUpdate(mySql);



Feb 2003 Copyright @ 2003, John Jay King Page 26

ROWID

• When updating or deleting rows previously 
displayed, be sure to store and use the Oracle 
ROWID for the column

• ROWID is the fastest possible access to a given 
row

• Don’t show the ROWID to the user…
(pretty scary looking…)

• Be careful! Oracle will reuse rowids when rows 
are deleted and new rows are inserted

(Probably best not to use rowid if Updates,  
Deletes, and Inserts are all possible)



Feb 2003 Copyright @ 2003, John Jay King Page 27

Process Result Sets

• Data is processed a row at time in the
ResultSet using the next method:

while (rs.next()) { /** process SQL row **/ }

• Retrieve values one column at a time by name, 
or, by position in the SQL statement:

String myEmpno = rs.getString("EMPNO"); 

String myEmpno = rs.getString(1);



Feb 2003 Copyright @ 2003, John Jay King Page 28

Result Set Processing

• Some other methods available for result set 
processing include:
– afterLast Moves cursor to the end of ResultSet
– beforeFirst Moves cursor to the front of ResultSet
– clearWarnings Clears all warnings on ResultSet
– close Releases ResultSet object's database 

and JDBC resources immediately
– deleteRow Deletes the current row
– first Moves cursor to first row in ResultSet
– getWarnings Returns the first warning reported
– insertRow Inserts a row into this ResultSet
– last Moves cursor to last row in ResultSet
– next Moves the cursor down one row
– previous Moves the cursor up one row



Feb 2003 Copyright @ 2003, John Jay King Page 29

Result Set Testing

• Some ResultSet methods useful for testing:
– rowDeleted
– rowInserted 
– rowUpdated
– wasNull

• Test wasNull for each column value that might 
be null

myEmpno = rs.getInt("EMPNO");
if (rs.wasNull()) 

myEmpno = 0000;
myEname = rs.getString("ENAME");
if (rs.wasNull()) 

myEname = " ";



Feb 2003 Copyright @ 2003, John Jay King Page 30

Result Set Values

• Some standard methods used to process column 
values by name or by position:
– getBigDecimal
– getBlob
– getBoolean
– getByte
– getClob
– getDate
– getDouble

– getFloat
– getInt 
– getLong
– getObject
– getShort
– getStatement
– getString



Feb 2003 Copyright @ 2003, John Jay King Page 31

OracleResultSet Extensions

• Oracle extensions if using OracleResultSet
instead of ResultSet:
– getArray
– getBfile
– getBlob
– getClob
– getNumber
– getOracleObject
– getRaw
– getRef
– getRowid
– getStruct



Feb 2003 Copyright @ 2003, John Jay King Page 32

JDBC Cleanup

• It is a good idea to put the Statement close and 
Connection close in a finally block

finally {
try {

rs.close(); // Close result set
stmt.close(); // Close statement
conn.close(); // Close connection

}
catch (SQLException e) {

// code for error closing things
}

}
// More precise to have try-catch for
// each “close”



Feb 2003 Copyright @ 2003, John Jay King Page 33

Batch Processing

• Sometimes a program will be doing a large 
number of Insert, Update, or Delete 
statements

• Normally, JDBC performs an automatic 
commit after each SQL statement’s 
execution

• This can be controlled using methods from 
the Connection object



Feb 2003 Copyright @ 2003, John Jay King Page 34

Batch Processing Syntax

• To turn off autocommit
conn.setAutoCommit(false);

• To add commands to the batch
stmt.addBatch(insertUpdateDeleteStmt);

• To execute a batch-style command
int [] updateCounts = stmt.executeBatch();

• To manually commit or rollback
conn.rollback(); // conn.commit();



Feb 2003 Copyright @ 2003, John Jay King Page 35

Using Stored Procedures

• Using Stored Procedures is a simply a matter of knowing 
the procedure/function name, parameters, and return type 
(for functions)

• CallableStatement objects or OracleCallableStatement 
objects are used instead of the normal Statement objects

• Input parameters are set using setString, setArray,
setAsciiStream, setBigDecimal, setBinaryStream, setBlob,
setBoolean, setByte, setBytes, setCharacterStream,
setClob, setDate, setDate, setDouble, setFloat, setInt,
setLong, setNull, setObject, setRef, setShort, setString,
setTime, setTimestamp, and setUnicodeStream

• Output parameters are defined using 
RegisterOutParameter

• Statement executeUpdate() is used
• Get methods are used to retrieve output values



Feb 2003 Copyright @ 2003, John Jay King Page 36

Calling a Procedure

• Note use of substitution/bind variables (OK with any SQL!)
• Variables are referenced via relative position in statement

// Following is Oracle-specific
CallableStatement stmt1 

= conn.prepareCall("begin addem(?,?,?); end;");
// Portable Stored Procedure call follows
// CallableStatement stmt1
//   = conn.prepareCall("{CALL addem(?,?,?)}");    
stmt1.setString(1,"123");
stmt1.setString(2,"456");
stmt1.registerOutParameter(3,Types.VARCHAR);
stmt1.executeUpdate();
System.out.println("Value returned is " 

+ stmt1.getString(3));



Feb 2003 Copyright @ 2003, John Jay King Page 37

Calling a Function

CallableStatement stmt2 

= conn.prepareCall("begin ? := times_2(?); end;");
stmt2.registerOutParameter(1,Types.NUMERIC);
stmt2.setString(2,"1234.56");
stmt2.executeUpdate();
java.math.BigDecimal outVal = stmt2.getBigDecimal(1);
System.out.println("Value returned is " + outVal);



Feb 2003 Copyright @ 2003, John Jay King Page 38

CallableStatement Methods

– getObject
– getShort
– getString
– getTime
– getTimeStamp
– registerOutParameter
– wasNull

– getBigDecimal
– getBoolean
– getByte
– getBytes
– getDate
– getDouble
– getFloat
– getInt
– getLong



Feb 2003 Copyright @ 2003, John Jay King Page 39

OracleCallableStatement Extensions

– getArray
– getBfile
– getBlob
– getClob
– getCursor
– getCustomDatum
– getNumber
– getOracleObject
– getRaw
– getRef
– getRowid
– getStruct



Feb 2003 Copyright @ 2003, John Jay King Page 40

Good, Better, Best?

• JDBC’s autocommit (the default) may be a poor 
performer when many SQL statements are 
involved
– Controlling commit/rollback manually will 

probably improve performance
– If many Insert/Update/Delete operations are 

involved, Batched SQL might improve 
performance more

– If many Insert/Update/Delete operations are 
involved, a Stored Procedure might work best

– If a statement is executed more than once, a 
Prepared Statement with bind variables is 
usually better (bind variables)



Feb 2003 Copyright @ 2003, John Jay King Page 41

What is SQLJ?

• SQLJ is “Pro*Java” in appearance and 
functionality
– Relatively normal SQL statements are coded
– A pre-processor converts the SQL to two files:

• xxx.sqlj SQLJ source code
• xxx.ser SQLJ profile

– Tends to be a better performer for “static” SQL
• SQLJ is mentioned here because it is a 

viable alternative to JDBC in many cases



Feb 2003 Copyright @ 2003, John Jay King Page 42

What Does SQLJ Look Like?

• SQLJ clauses begin with a pound (#) sign and 
include standard looking SQL statements

• The statement below inserts a row into the EMP 
table passing three column values

#sql {INSERT INTO EMP (EMPNO, LASTNAME, SALARY)
VALUES( :empId, :lastName, :empPay) };

– Remember how complex JDBC calls with replaceable 
values were?

– SQLJ is far simpler to code
– Interestingly, most Java programmers seem to prefer the 

JDBC code



Feb 2003 Copyright @ 2003, John Jay King Page 43

Oracle Documentation

• Oracle9i/8i CORBA Developer's Guide and Reference 
• Oracle9i/8i Enterprise JavaBeans Developer's Guide and Reference
• Oracle9i/8i Java Developer's Guide 
• Oracle9i/8i Java Stored Procedures Developer's Guide 
• Oracle9i/8i Java Tools Reference 
• Oracle9i/8i JDBC Developer's Guide and Reference 
• Oracle9i/8i JPublisher User's Guide 
• Oracle9i/8i Oracle Servlet Engine Release Notes 
• Oracle9i/8i Oracle Servlet Engine User's Guide 
• Oracle9i/8i SQLJ Developer's Guide and Reference 
• Oracle9i/8i Supplied Java Packages Reference 
• Oracle JavaServer Pages Developer's Guide and Reference
• Javadoc for Oracle JDBC:

<oraclehome>/jdbc/doc/javadoc.zip
• Lots of papers and examples:

http://technet.oracle.com



Feb 2003 Copyright @ 2003, John Jay King Page 44

Wrapping it all Up

• JDBC access allows full use of Oracle from 
Java programs

• Oracle-specific features improve performance 
at the cost of portability

• Review of the steps:
1. Load/register the JDBC driver
2. Connect to the database
3. Create a statement object
4. Execute SQL statements and process results
5. Close the result set (if used), statement, and 

connection
(probably from a finally block)



Feb 2003 Copyright @ 2003, John Jay King Page 45

Mark your calendars for the
Spring 2003 Atlantic Oracle Training Conference!

May 8–9, 2003

At the new 
Washington Convention Center

Washington, D.C.



Feb 2003 Copyright @ 2003, John Jay King Page 46

To contact the author:To contact the author:
John King
King Training Resources
6341 South Williams Street
Littleton, CO 80121-2627 USA
1.800.252.0652 - 1.303.798.5727
Email: john@kingtraining.com
Paper & Sample Code: www.kingtraining.com

Thanks for your attention!

mailto:john@kingtraining.com

	Making Oracle and SQLJ Work For You
	Session Objectives
	Major Keywords
	SQLJ Process
	Oracle and Java
	Database Connectivity with JDBC
	JDBC Drivers
	Which Driver for Me?
	What Database Version?
	Oracle JDBC Features
	JDBC Drivers
	Using JDBC
	Load/register JDBC driver
	Connect to the Database
	Connection Object
	Internal Connection
	Connection Pools
	More on Connection Pools
	Using Connection Pools
	Connect Using Pool
	Create a Statement Object
	Statement Object
	PreparedStatement Object
	Result Set
	Execute SQL Statements
	ROWID
	Process Result Sets
	Result Set Processing
	Result Set Testing
	Result Set Values
	OracleResultSet Extensions
	JDBC Cleanup
	Batch Processing
	Batch Processing Syntax
	Using Stored Procedures
	Calling a Procedure
	Calling a Function
	CallableStatement Methods
	OracleCallableStatement Extensions
	Good, Better, Best?
	What is SQLJ?
	What Does SQLJ Look Like?
	Oracle Documentation
	Wrapping it all Up

