
Copyright @ 2005, John Jay King Page 1

XML Survival Skills for DBAs
Presented to:

RMOUG - Nov. 2005
Quarterly Educational Workshop

John Jay King
King Training Resources
john@kingtraining.com

Download this paper and code examples from:
http://www.kingtraining.com

http://www.kingtraining.com/

Copyright @ 2005, John Jay King Page 2

Session Objectives

• Understand what XML extensible Markup
Language (XML) and what it is not

• Use XML vocabulary effectively
• Know the rules for XML tags and

"well-formed" XML documents
• Understand the relationship between XML,

style sheets, DTDs, XSL, and XSLT
• Become aware of XML-supporting

applications, databases, and servers

Copyright @ 2005, John Jay King Page 3

Major Keywords

• XML
• Tag
• Element
• Document
• Well-formed XML
• Stylesheet (CSS or XSL)
• Validation (DTD and Schema)

Copyright @ 2005, John Jay King Page 4

eXtensible Markup Language (XML)

• XML is a set of rules for defining tags to describe a
document’s structure and parts

• XML is a "meta-markup" language, providing the syntax
used to define the syntax and structure of a document, not
the presentation or the format

• The XML specification is authored by the W3C
(World Wide Web Consortium www.w3.org)

• “Markup" is from typesetting: publishers "markup" a
document telling the typesetter how to format the page

• Computer markup languages like HTML and Troff have
fixed markup features, for example, HTML provides a set
of predefined "tags" used to format data
(<title>,<body>,<p>,<h1>, etc…)

• XML is "extensible" because no tags are predefined
• XML is used to define your own tags or use other’s tags
• All XML-based languages use the same syntax

http://www.w3.org/

Copyright @ 2005, John Jay King Page 5

History of XML

• XML is based upon markup language technology first created by IBM in
the 1960’s
– Generalized Markup Language (GML) 1969 (IBM Text Description Language

(TDL), renamed GML in 1971 (three developers: Charles F. Goldfarb, Ed
Mosher, and Ray Lorie)

– GML product released by IBM in 1973
– Late 70’s IBM product Document Control Facility (DCF) or "Script" introduced

Document Type Descriptors (DTDs) and Document Types
– SGML (Standard Generalized Markup Language) became a reality in the

early 1980s, while powerful, SGML was deemed too complex for everyday
use

• XML was created as a much simpler yet still powerful tool
• In February 1998 the Worldwide Web Consortium (W3C) proposed a

recommendation for XML 1.0, XML 1.0 second edition was
recommended in October 2000, XML 1.0 third edition was recommended
in February 2004, XML 1.1 was also recommended in February 2004

• See for more information about current XML (and related) standards see
the website www.w3c.org or www.w3.org

• The ANSI/ISO SQLX standard provides support for XML in a database
system, for more information see www.sqlx.org

http://www.w3c.org/
http://www.w3.org/

Copyright @ 2005, John Jay King Page 6

Recent Updates

• XML 1.1 has been released by W3C as a recommendation in
February 2004, it provides: Unicode Control characters, line ending
issue improvements, and Namespaces 1.1 incorporating corrections
and a mechanism to undeclared prefixes

• XML 1.0 Release 3 was recommended in February 2004: The third
edition is not a new version of XML but fixes many errors and clarifies
use of keywords like must, should and may

• Extensible Stylesheet Language (XSL) Version 1.1 working draft was
released in December 2003 including: Change marks, Indexes,
Multiple flows, Bookmarks, and Extended support for graphics
scaling, markers, and page numbers

• The XML Schema Working Group released the first public Working
Draft of Requirements for XML Schema 1.1 in January 2003 adding
functionality and clarifying the XML Schema Recommendations

• XPath 2.0 was recommended for release in December 2003
• Document Object Model (DOM) Level 3 is available as of December

2003; this release of DOM allows programs and scripts to dynamically
update the content and style of documents, it also provides the ability
to represent part of a DOM tree in memory using XPath notation

Copyright @ 2005, John Jay King Page 7

XML and HTML

• New XML developers often confuse HTML and XML
• XML looks like HTML but is NOT HTML
• HTML specifies what each tag means and how it will

appear in the browser:
<html>

<body>
<h1>Introduction to XML</h1>

</body>
</html>

• XML tags describe data, interpretation varies:
<myclasses>

<class>
<name>Introduction to XML</name>
<author>John Jay King</author>
<email>john@kingtraining.com</email>

</class>
</myclasses>

Copyright @ 2005, John Jay King Page 8

XML and HTML

• XML rules are strict where HTML rules are often loose
• HTML tags describe the presentation of data, tags are

predefined and have specific meanings to standard
browsers

• XML tags describe the content of data in a document,
tags are determined by the document's creator and may
any valid name

• XHTML (eXtensible Hypertext Markup Language) is a
hybrid of XML and HTML that provides precise HTML
rules that conform to XML guidelines
(this is the latest HTML standard too)

Copyright @ 2005, John Jay King Page 9

XML "Family" of Software
• XML 1.0 defines what tags and attributes are
• XHTML (eXtensible Hypertext Markup Language) is an XML application to

replace HTML
• DTD (Document Type Definition) is a non-XML file describing the elements

and syntax used by an XML document
• Schema is an XML file describing the elements and syntax used by an XML

document
• XLink describes a method of using hyperlinks to reference XML
• XPointer describes hyperlinks that point to specific XML file elements
• JAXP (Java API for XML Processing) is a set of Java classes and interfaces

used work with XML inside Java programs
• DOM (Document Object Model) provides access to XML document

information
• SAX (Simple API for XML) provides access to XML document information
• XPath (XML Path Language) provides a mechanism for selecting XML

document subsets
• XSL (Extensible Style Language) is an advanced style sheet language

tailored of XML
• XSLT (XML Stylesheet Language Transformations) is used to transform XML

to some other form (e.g. HTML)

Copyright @ 2005, John Jay King Page 10

Why XML?
• XML is non-proprietary providing a standardized

mechanism available to all vendors
• Elements and tags may be defined as needed allowing

specialized languages for different disciplines
• Document templates, files, and database data can all be

stored using an XML-described format
• Standardized formats make it easier to share data across

various platforms, cultures, and languages
• Industry groups and companies are working to use XML

to build common tag sets to allow data exchange via
common data structures

• XML is frequently being used by software vendors to
specify configuration information including: Databases,
Web Servers, and Communications

• XML is used to describe data files used for: Word
processing, Electronic Data Interchange (EDI), Sequential
data storage, and many other reasons

Copyright @ 2005, John Jay King Page 11

Some XML Languages

• XML is used for creating Markup Languages:
– Mathematical Markup Language (MathML)
– Synchronized Multimedia Integration Language (SMIL)
– Voice Extensible Markup Language (VoiceXML)
– Web Ontology Language (OWL)
– Web Services Description Language (WSDL)
– Speech Synthesis Markup Language (SSML)
– A P3P Preference Exchange Language (APPEL)
– Extensible HyperText Markup Language (XHTML)
– XML Path Language (XPath)
– XML Pointer Language (XPointer)
– XML Query Language (XQuery)

Copyright @ 2005, John Jay King Page 12

• XML provides the syntax necessary to define
custom tags and with them custom elements

• Tags are delineated by "<" and ">" symbols:
– Start tag <name>
– End tag </name> (note slash)

• Empty tags incorporate the start and end
together:
– Tag <name/>

• Elements are a tag pair and their contents, as in
the "name" element below

• Tags and contents together are the tag element:

<name>Geoffrey Holder</name>

XML Tags and Elements

Copyright @ 2005, John Jay King Page 13

Element Hierarchy
<myBooks>

<book> <name>Learning XML</name>
<author>Eric T Ray</author>
<publisher>O’Reilly</publisher> </book>

<book> <name>XML Bible</name>
<author>Elliotte Rusty Harold</author>
<publisher>IDG Books</publisher> </book>

<book> <name>XML by Example</name>
<author>Sean McGrath</author>
<publisher>Prentice-Hall</publisher> </book>

</myBooks>

– The "root" element above is <myBooks>
(every XML document must have a "root" element)

– Three <book> elements are part of <myBooks>
– Each <book> element includes three elements: <name>, <author>, and

<publisher>
– Elements may be nested, start and end tags must entirely surround

data
– Indentation is optional, but, your coworkers will thank you

Copyright @ 2005, John Jay King Page 14

Tag/Element Naming
• XML has specific rules for naming of Tags/Elements
• Element names must begin with a letter or an underscore
• Element names may contain letters, underscores (_),

numbers, hyphens (-), and colons (:)
• Start tags must match end tags exactly
• Names in XML are case-sensitive and may not contain

blanks (officially there is no limit on the length of names…)
• Names should not begin with “xml” (regardless of case)

<name>Jones</lastname> incorrect
<lastname>Jones</lastname> correct
<last name>Jones</last name>incorrect
<lastname>Jones</lastname> correct
<lastname>Jones</lastName> incorrect
<lastName>Jones</lastName> correct

Copyright @ 2005, John Jay King Page 15

Attributes

• XML elements may use descriptive attributes
• Attributes are added to an element’s start tag using the

name of the attribute followed by an equal sign, followed by
the value of the attribute (surrounded by quotes or
apostrophes)
<book isbn="0-13-960162-7" binding="perfect">

<name>Learning XML</name>
<author>Eric T Ray</author>
<publisher>O'Reilly</publisher>

</book>
• Attribute naming rules are the same as for element naming,

attribute names must be unique within an element. Usually,
attributes are used to provide information about the data in
an element

• Attribute values must be enclosed by quotation marks (") or
apostrophes (')

Copyright @ 2005, John Jay King Page 16

"Well-Formed" XML

• XML has a strict set of rules to determine that a document
is "well-formed" or the parser will reject the file:
– Each document must declare itself an XML document using an

XML declaration (not required by all parsers today):
<?xml version="1.0" encoding="UTF-8"?>

– Each document must have a single "root" element that completely
contains all of the other elements in the document (one set of
outer tags)

– All elements that include data must have both start <name> and
end </name> tags

– Empty tags are marked using a slash before the close of the start
tag and omitting the end tag<name/> (usually include attributes)

– Tags may not overlap, but, may be nested
– Attribute values are surrounded by quotes (") or apostrophes (')
– Most XML tools will refuse to process documents that are not

well-formed

Copyright @ 2005, John Jay King Page 17

Character Entities

• XML parsers assign specific meanings to certain
characters (e.g. "<")

• XML defines five "entity references" to allow
documents to include the following characters:
– Ampersand &
– Apostrophe '
– Double quote "
– Greater than >
– Less than <

• Each entity begins with an ampersand (&) and is
ended by a semicolon (;)
<company>AT&T</company> incorrect
<company>AT&T</company> correct

Copyright @ 2005, John Jay King Page 18

XML Processors

• Software that reads and does something with XML is
called an "XML Processor"

• Many web browsers, XML editors, and software products
are XML processors

• XML Processors typically include all or some of the
following features:
– Parser translates XML markup and data into a stream of tokens
– Event Switcher gets tokens from parser and sorts them by

function
– Tree representation of XML document structure

(may allow manipulation of nodes)
– Tree processor that processes the XML tree for some purpose

• At the least, an XML processor reads an XML document
and converts it into a form that may be used by other
software; this is called "Parsing "

Copyright @ 2005, John Jay King Page 19

Parsers

• Parsers are the fundamental part of any XML
processor, they are used to:
– Read XML data
– Translate data into recognizable tokens (the stream of

characters is separated into instructions or hierarchical
information)

– Assemble data into a hierarchy
• By design Parsers are Strict! All documents must

be "well-formed" and any error aborts the parsing
operation

Copyright @ 2005, John Jay King Page 20

Oracle XML Support

• Oracle's XMLtype is an Oracle-defined datatype
used to store XML data within the database
(CLOB underneath)

• The XML parser is part of the database
• Oracle provides several XML-oriented SQL

functions to support XML use
• XML was supported weakly by Oracle8i
• Lots of XML support was added in Oracle9i and

then again by Oracle 10g, check the reference
manual for more information:

"Oracle XML DB Developer's Guide"

Copyright @ 2005, John Jay King Page 21

JDeveloper

• JDeveloper10g offers support for XML file
editing including:
– File creation and manipulation
– Verifying that a document is “well-formed”
– Validating a document against a schema
– XML editing supported by code-insight

Copyright @ 2005, John Jay King Page 22

JDeveloper XML Editor

Copyright @ 2005, John Jay King Page 23

XMLType Functions

• XMLType member functions include:
– createXML() Create XMLType instance
– existsNode() Checks if XPath can find valid nodes
– extract() Uses XPath to return XML fragment
– isFragment() Checks if document is a fragment
– getClobVal() Gets document as a CLOB
– getStringVal() Gets value as a string
– getNumberVal() Gets numeric value as a number

Copyright @ 2005, John Jay King Page 24

SQL’s XML Functions

• SQL provides several functions specifically for
dealing with XML data including:
– SYS_DBURIGEN(ts) - Generate DBURITYPE URL

used to obtain XML data from the database
– SYS_XMLGEN(exp) - Convert specified database row

and column into an XML document
– SYS_XMLAGG(exp) - Generate single XML document

from aggregate of XML data specified by "exp"
– XMLELEMENT(name,exp) - Generates XML element

using name and exp as data
– XMLATTRIBUTES(exp,list) - Generates XML attributes

using expression
• XMLELEMENT and XMLATTRIBUTES illustrate

Oracle’s support of the ANSI/ISO SQLX standard

Copyright @ 2005, John Jay King Page 25

SYS_XMLGEN

• Uses a single input expression representing a particular
row/column (scalar value or user-defined type)
– A single XML element representing scalar values is returned
– XML elements representing each of a user-defined type’s data

items is returned
– Returns an instance of SYS.XMLType data that is an XML

document
• The example below uses getStringVal since SYS.XMLType

data returns as CLOB and is not displayable by SQL*Plus
select sys_xmlgen(ename).getStringVal() Name

from emp
where job = 'ANALYST'

NAME

<?xml version="1.0"?>
<ENAME>FORD</ENAME>
<?xml version="1.0"?>
<ENAME>SCOTT</ENAME>

Copyright @ 2005, John Jay King Page 26

SYS_XMLAGG

• SYS_XMLAGG aggregates all XML documents (or
fragments) in an expression to produce a single document
– ROWSET is the default tag name used
– SYS.XMLGenFormatType may be used to change a tag name

• The example below uses the SYS_XMLGEN function to
generate an XML document (example uses getClobVal
since SYS.XMLType data returns as CLOB)
select sys_xmlagg(SYS_XMLGEN(Ename)).getClobVal() emps

from emp
where deptno = 10

EMPS
--
<?xml version="1.0"?>
<ROWSET>
<ENAME>KING</ENAME>
<ENAME>CLARK</ENAME>
<ENAME>MILLER</ENAME>
</ROWSET>

Copyright @ 2005, John Jay King Page 27

XMLElement

• XMLELEMENT(name,exp) Generates an XML
element using name and exp as data:
select xmlelement("employee",

xmlelement("empid",empno),
xmlelement("empname",ename)) myxml

from emp

<employee> <empid>7369</empid>
<empname>SMITH</empname> </employee>

<employee> <empid>7499</empid>
<empname>ALLEN</empname> </employee>

<employee> <empid>7521</empid>
<empname>WARD</empname> </employee>

<employee> <empid>7566</empid>
<empname>JONES</empname> </employee>

<employee> <empid>7654</empid>
<empname>MARTIN</empname> </employee>

Copyright @ 2005, John Jay King Page 28

XMLAttributes

• Generates XML attributes using an expression list:
select xmlelement("employee",

xmlelement("emp", xmlattributes(empno as "empno",
ename as "ename")),

xmlelement("job",job),
xmlelement("hiredate",hiredate),
xmlelement("pay", xmlattributes(nvl(sal,0) as "sal",

nvl(comm,0) as "comm"))
) as myxml

from emp;

<employee>
<emp empno="7782" ename="CLARK"/>
<job>MANAGER</job>
<hiredate>09-JUN-81</hiredate>
<pay sal="2450" comm="0"/>

</employee>
*** More like the above ***

Copyright @ 2005, John Jay King Page 29

Putting them Together
select xmlelement("employee",

xmlagg(xmlelement("emp",xmlattributes(empno as "empno",
ename as "ename"),

xmlelement("job",job),
xmlelement("hiredate",hiredate),
xmlelement("pay",
xmlattributes(nvl(sal,0) as "sal",

nvl(comm,0) as "comm")))))
from emp;

<employee>
<emp empno="7839" ename="O'BRIAN">

<job>PRESIDENT</job>
<hiredate>17-NOV-81</hiredate>
<pay sal="5000" comm="0"/>

</emp>
<emp empno="7698" ename="BLAKE">

<job>MANAGER</job>
<hiredate>01-MAY-81</hiredate>
<pay sal="2850" comm="0"/>

</emp>
*** More like above ***

</employee>

Copyright @ 2005, John Jay King Page 30

Other XML Functions
• XMLColattval

– Creates series of XML fragments using an element name of
"column" and column names and values as attributes

• XMLConcat
– Concatenates a series of XMLType objects (opposite of

XMLElement)
• XMLForest

– Creates XML fragments from a list of arguments/parameters
• XMLSequence

– Creates Varray of XMLType instances
• XMLTransform

– Uses input XMLType and XSL style sheet (also XMLType) to
create a new XMLType

• UpdateXML
– Uses an XMLType and an XPATH reference and returns an

updated XMLType

Copyright @ 2005, John Jay King Page 31

PL/SQL XML INSERT
CREATE or REPLACE PROCEDURE insertPurchaseOrderXMLOrder IS

PurchaseOrderXML CLOB; -- CLOB to hold XML
BEGIN

PurchaseOrderXML :=
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<PurchaseOrder>

<POID>1234</POID>
<Date>2003-0401</Date>
<CustomerID>AA1234></CustomerID>
<Company>King Training Resources</Company>
<!-- other elements -->

</PurchaseOrder>';
-- Insert the Purchase Order XML into an XMLType column
INSERT INTO purchaseOrderTable (purchaseOrder)

VALUES (XMLTYPE(PurchaseOrderXML));
EXCEPTION

WHEN OTHERS THEN
raise_application_error(-20101,
'Error loading purchaseOrderTable, SQLCODE='||SQLERRM);

END insertPurchaseOrderXMLOrder;

Copyright @ 2005, John Jay King Page 32

Style Sheets

• XML describes data contents, not presentation
• Style sheets are used to provide presentation

specifications for XML documents
• XML supports both CSS and XSL stylesheets

– Cascading Style Sheets (CSS) have been supported by browsers
for some time now and provides a tag-like language, but, is not
XML itself

– The eXtensible Style Sheet Language (XSL) is an XML
application designed specifically for formatting XML documents!
XSL uses XML syntax and more-modern browsers interpret XSL

• XML documents use a PI (Processing Instruction) to
define the stylesheet type and name:

<?xml-stylesheet type="text/css" href="myBooks.css"?>

Copyright @ 2005, John Jay King Page 33

Using XSL Stylesheets

• To use an XSL Stylesheet from an XML
File the syntax is similar to when using a
.css file.

<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl"

href="myfile.xsl" ?>
<RootyTooty>

<!-- xml document goes here -->
</RootyTooty>

Copyright @ 2005, John Jay King Page 34

XSL and CSS

• eXtensible Stylesheet Language (XSL) is a well-formed
and validated XML document providing a treasure-trove of
data waiting to be used

• Unfortunately, the format of XML data is easy for
computers to understand and not so easy for the average
human (too many characters & tags!)

• CSS gives us some formatting capability, but, its not XML
and can't take advantage of many of XML's features

• The eXtensible Style Sheet Language (XSL) was
designed specifically to transform XML data from one
form to another: XML document to XML document, XML
document to text, Text to XML document, XML document
to PDF, XML database interactions, and more!

Copyright @ 2005, John Jay King Page 35

XSLT

• With XSL we can use eXtensible Stylesheet Language for
Transformations (XSLT) to display data in different form than stored

• XSLT can also trim away unwanted portions of the XML document so
that the output has only what is required

• XSLT is subset derived from XSL to use style elements for the
purpose of transforming data from one format to another to describe
the desired output for specific fields

• Unlike CSS which generates HTML, XSLT generates XML output
• Java programmers might use the SAX or DOM object model to read

and process XML transformations, fortunately, XSL/XSLT will
accomplish the same thing with the help of a browser!

• XSL and XSLT are the responsibility of the World Wide Web
Consortium (W3C), please consult the W3C website for the latest
information about XSL and XSLT

• XSL/XSLT provide many elements to help in the transforming or
presentation of XML data

• The xsl namespace prefix is usually used when processing
XSL/XSLT

Copyright @ 2005, John Jay King Page 36

Stylesheet Elements

• Some of the Stylesheet elements include:
– xsl:template - Creates a template "step"

<xsl:template match="/">
<xsl:template match="element">

– xsl:apply-templates - Matches templates with input
data and outputs when matches occur

<xsl:apply-templates
select="element/subelement">

<xsl:apply-templates select="element">
<xsl:apply-templates />

Copyright @ 2005, John Jay King Page 37

Sample Stylesheet, page 1
<?xml version="1.0" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
<xsl:template match="/">
<html> <head> <title>XML Class List</title> </head>
<body>
<h1 align="center">XML Class List</h1>
<table>
<xsl:apply-templates select="myStudents/class"/>
</table>

</body>
</html>
</xsl:template>
<xsl:template match="class">

<tr> <td> <h2><xsl:value-of select="title"/></h2> </td>
</tr>
<tr> <td>
<h2>Number of days = <xsl:value-of

select="numberdays"/></h2>
</td> </tr>

<xsl:apply-templates select="scheduledClass"/>
</xsl:template>

Copyright @ 2005, John Jay King Page 38

Sample Stylesheet, page 2
<xsl:template match="scheduledClass">
<tr> <td> Class code = <xsl:value-of select="classcode"/>

Date = <xsl:value-of select="date"/> </td> </tr>
<tr> <td> Location = <xsl:value-of select="location"/>

Instructor = <xsl:value-of select="instructor"/>
</td> </tr>

<xsl:apply-templates select="student"/>
</xsl:template>
<xsl:template match="student">
<tr> <td> <xsl:value-of select="name"/> </td> </tr>
<xsl:apply-templates />

</xsl:template>
</xsl:stylesheet>

• The statement select="student" locates a specific node and
apply-templates select="myStudents/class" matches up with
the node xsl:template match="class"

Copyright @ 2005, John Jay King Page 39

DTDs & Schemas: "Valid" Documents

• To be well-formed:
– Documents must include an XML declaration
– Root element appears only once
– Each start tag has a matching end tag
– Elements may not overlap

• To be well-formed may not be enough, what if you
want to share your XML with others?

• What guarantees that your elements will match
those used by others?

• XML provides two mechanisms for validating XML
files, Document Type Definitions (DTDs) and
Schemas

Copyright @ 2005, John Jay King Page 40

Document Tag Definition (DTD)

• Document Type Definitions (DTDs) specify the elements a document
must contain, the element sequence, and the contents of each
element

• Schemas (discussed later) are also used for validation purposes
• The DTD was the first mechanism used in XML to ensure that

document definitions matched
• Using a common definition means that team members may

collaborate by merging documents
• Creating DTDs can be complex, DTD syntax is different from

standard XML
• Using DTDs ensures that XML documents follow rules
• DTDs may be specified internally inside the XML file or externally in a

separate file
• XML tags are allowed to be just about anything the document creator

feels is reasonable, when passing XML documents it seems like a
good idea for the recipient of a document to have a mechanism for
validating the XML

Copyright @ 2005, John Jay King Page 41

DTD Rules

• A DTD is responsible for:
– Naming document type
– Defining each element a document might use
– Defining the data type of each element
– Defining the number of occurrences allowed for each

element (zero, one, many)
– Defining attributes used for each element and the

allowed attribute values
• XML Schema definitions (recommended by W3C

in May 2001) are intended to replace DTD use
eventually (XML Schemas are written using
XML).

Copyright @ 2005, John Jay King Page 42

DTD Syntax

• DTDs include many features including:
– Document type: name of the document
– Elements: fields in the document
– Data type: PCDATA (parsed character) most common

(tags will be interpreted)
– Field occurrences:

• Plus-sign (+) - one or more
• Asterisk (*) - zero or more
• Question mark (?) - zero or one
• Default - exactly one

– Attributes for a field and permissible values may be specified
– DTDs may use standard XML comments <!-- comment -->

• DOCTYPE is the high-level (root) tag in a DTD, it includes the DTD
text or reference a URI that points to a file containing the DTD

• If a DTD is included in the same file as the XML document, the
DOCTYPE and associated specifications are included at the top of
the file (might use standalone="yes" if no external files are used)

Copyright @ 2005, John Jay King Page 43

Sample DTD
<?xml version="1.0"?>
<!ELEMENT myStudents (class+)>
<!ELEMENT class (title, numberdays, scheduledClass+)>
<!ELEMENT title (#PCDATA)> <!ELEMENT numberdays (#PCDATA)>
<!ELEMENT scheduledClass
(classcode,date,location,instructor,student*)>

<!ELEMENT classcode (#PCDATA)> <!ELEMENT date (#PCDATA)>
<!ELEMENT location (#PCDATA)> <!ELEMENT instructor (#PCDATA)>
<!ELEMENT student (name)> <!ELEMENT name (#PCDATA)>

Copyright @ 2005, John Jay King Page 44

Using XML DTDs

• To reference an XML DTD from an XML
document, use a PI as follows:
<?xml version="1.0" standalone="no" ?>
<!DOCTYPE myStudents SYSTEM "myStudents.dtd">
<myStudents>

<class>
<title>Introduction to XML</title>

...

Copyright @ 2005, John Jay King Page 45

Problems with DTDs

• DTDs have their own syntax, different from
standard XML

• All DTD elements are global in nature
• DTD's have no mechanism for specifying

the type of data that belongs in a field

Copyright @ 2005, John Jay King Page 46

Schemas

• W3C has created a new, improved method for validating
XML documents called a Schema

• Schemas are well-formed XML documents themselves
that describe the XML document's format

• With Schemas, XML documents and their format
descriptions use the same basic formatting rules (XML)
perhaps making it easier to work with both

• Schemas are used for XML document validation
• Schemas are also useful as documentation tools, since

they follow the rigid XML standard they are machine-
readable!

• As members of the XML family are updated (e.g. XPath,
XSLT, XQuery), Schemas are incorporated into their
design

Copyright @ 2005, John Jay King Page 47

XML Schema Syntax, page 1
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">
<xs:element name="myStudents">

<xs:complexType>
<xs:sequence>

<xs:element ref="class"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="class">

<xs:complexType>
<xs:sequence>

<xs:element ref="title"/>
<xs:element ref="numberdays"/>
<xs:element ref="scheduledClass"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

Copyright @ 2005, John Jay King Page 48

XML Schema Syntax, page 2
<xs:element name="title" type="xs:string"/>

<xs:element name="numberdays" type="xs:byte"/>
...

<xs:element name="classcode">
<xs:simpleType>

<xs:restriction base="xs:short">
<xs:enumeration value="1504"/>
<xs:enumeration value="1508"/>
<xs:enumeration value="1511"/>

</xs:restriction>
</xs:simpleType>

...
</xs:schema>

Copyright @ 2005, John Jay King Page 49

Using XML Schemas

• To reference an XML Schema from an XML
document, modify the root element to include
the schema:
<?xml version="1.0" standalone="no" ?>
<?xml-stylesheet href="myStudents.css" type="text/css" ?>
<myStudents

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance“
xsi:noNamespaceSchemaLocation="myStudents.xsd">
<class>

<title>Introduction to XML</title>
...

Copyright @ 2005, John Jay King Page 50

XPath and Xlink

• XML Path Language (XPath) is designed to provide quick and
easy access to any node in our document's hierarchy

• Having lots of information in XML is of little use if we cannot
get to data when it is needed, XPath to the rescue!

• XPath provides a mechanism to address any element or
attribute

• XLink (XML Linking Language) provides a hyperlink-type
capabilty to XML

• The XLink specification is in a state of flux and is not
supported by many browsers and tools, it is most useful from
within programs

• XLink allows links to be constructed using any element
(XML does not have any pre-defined element tags)

• XLinks build on the capability of HTML linking and avoid some
of the problems

Copyright @ 2005, John Jay King Page 51

Oracle9i R2 – XML DB

• XML-related features have been greatly
enhanced in Oracle9iR2

• XML DB allows native XML database activity in
addition to the standard ORDBMS functionality

• XML DB allows XML documents to be stored in
the database in two ways:
– Unstructured XMLType (CLOB); XML stored as string

of bytes in the database
– Structured XMLType with document “shredded” into

objects in the ORDBMS (SQL ’99 standard objects)
• Oracle supports XPath notation to access data

within a document (though not fully, coming in
future releases)

Copyright @ 2005, John Jay King Page 52

Oracle 10g R1 – XML DB
• Once again, XML-related features have been greatly enhanced in Oracle 10g
• IMPORT/EXPORT utility may load XML data into XMLType tables
• Registered Schemas may be modified (evolved) using a new PL/SQL packaged

procedure DBMS_XMLSCHEMA.CopyEvolve()
• DBMS_XMLGEN now supports Hierarchical Queries (CONNECT BY) and

allows “pretty printing” to be turned off
• Globalized character encoding and multibyte characters may be used, also client

character set may be different from the database character set
• C and C++ DOM API for XML (both XML DB and XDK)
• SQL*Loader loads “structured” or “unstructured” XMLType Tables and Columns
• Oracle Text new XML features:

– CTXXPATH now supports postional predicates and attribute existence expressions
– Oracle Text supports highlighting for INPATH and HASPATH operators of ConText
– New syntax for XPath ora:contains function

• XMLType may be an Advanced Queuing (AQ) payload type
• See the Oracle documention:

Oracle XML DB Developer's Guide
Oracle XML Developer's Kit Programmer's Guide
Oracle XML API Reference

Copyright @ 2005, John Jay King Page 53

Oracle 10g R2 – XML DB

• Full support for XMLtype in Java, C, and C++
• XSLT 2.0 with XPath functions and operators
• JAXB Compiler
• XQuery: XMLQUERY and XMLTABLE functions

– XMLQuery Build XML data, query both XML and relational data using XQuery
– XMLTable Create relational tables and columns from XQuery results

• XPath Rewrite speeds up XML queries
• InsertXML(), AppendChildXML(), InsertXMLBefore(), and DeleteXML()

functions added to UpdateXML()
• SOAP Services in C and C++
• SQL/XML (SQLX) 2003 standard: XMLPI, XMLComment, XMLRoot,

XMLSerialize, XMLCDATA, and XMLParse
• XML Object support in Enterprise Manager Web Console
• HTTPS support for XML DB
• Oracle XDK PL/SQL packages deprecated: XMLDOM, XMLPARSER,

XSL_PROCESSOR replaced by DBMS_XMLDOM, DBMS_XMLPARSER,
DBMS_XSLPROCESSOR

Copyright @ 2005, John Jay King Page 54

Structured Storage

• XML document is “shredded” into database
objects

• Documents must conform to a registered
XMLSchema; XML DB will use the XML Schema
to generate SQL

• Structured Storage has several advantages:
– Memory management is better than with CLOB
– Storage requirements are reduced
– Indexing is possible
– Partial or in-place updates are possible

• Adding and retrieving XML documents to the
database is slower when using Structured
Storage

Copyright @ 2005, John Jay King Page 55

Schema Validation

• XML Schemas are powerful, but, do not provide
some features we take for granted in the
database such as UNIQUE key and FOREIGN
key constraints

• By default, Oracle does not completely validate
documents as they are inserted into the
database; restriction facets such as minLength,
maxLength, and patterns are ignored

Schema validation may be enabled for individual
schemas via Check Constraints or Triggers

Copyright @ 2005, John Jay King Page 56

XML DB Components

• XMLType Data type defining the column or table as
XML data and including methods to allow
operations on the XML such as XSL
transformations and validation via
XML Schema

• XMLSchema Complete XML Schemas may be
registered with XML DB to validate
documents and to define how documents
will be stored by the database

• XML DB Repository Provides mechanism for associated
URIs with XPath notation to access
XML data; supports interaction with HTTP,
FTP, WebDAV clients

• SQL/XML (SQLX) XML DB includes many operators that
are part of the new ANSI/ISO SQL/XML
(SQLX) standard to:

– Query and access XML documents as part of SQL
– Generate XML using the SQL SELECT statement

Copyright @ 2005, John Jay King Page 57

What is WebDAV?

• WebDAV is an IETF (www.ietf.org) standard set
of HTTP extensions allowing an HTTP Server to
serve files to a WebDAV-enabled client

• Any WebDAV-enabled product can read and
update XML content stored in the XML DB
Repository

• Since both Microsoft Office (Office XP and
beyond) and Oracle support WebDAV, they work
together automatically

• Some other WebDAV-enabled products:
Microsoft Internet Explorer, Altova XMLSpy,
Macromedia MX and others

• XML’s promise of portable data is greatly
facilitated by WebDAV

http://www.ietf.org/

Copyright @ 2005, John Jay King Page 58

Running Oracle’s XDB Demo

• Go to http://technet.oracle.com

If you don’t already belong:
– No cost (other than an email address and

occasional spam)
– Most trial software available for download
– Many white papers and demos

• Look under “XML” for the “XDBBasicDemo”
– Download it
– Download other software XML editor, FTP package

(not required, but makes installation of demo easier)
– Try WebDAV by following the wll-laid-out instructions

http://technet.oracle.com/

Copyright @ 2005, John Jay King Page 59

XML and JSP (User Tag Libraries)

• JSP developers write HTML and enclose Java code in JSP tags
• JSP tags are coded into HTML and start with "<%" and end with " %>“
• Separating Java and HTML makes code more useful to web designers
• JSP Custom Tags allow elimination of most Java code from JSPs
• Custom Tags are probably the most powerful feature of JSPs

– Web Page designers may concentrate on using tags to create
functional web sites

– Developers may concentrate on the nitty-gritty details necessary to
make the tags work

• A few simple steps are required to create and use Custom Tags:
– Create Java class to provide the low-end code
– Create a Tag Library Descriptor (TLD) connecting the .class file

(or .jar file) to a tag name
– Reference and use the TLD
– Use Taglib to connect TLD to a prefix used in the JSP
– Use prefix and tag name in JSP source

Copyright @ 2005, John Jay King Page 60

XML and Java (DOM, SAX, SOAP)

• Java is relatively new (1995) promising portable code; write-
once, run-everwhere

• XML's text base and standardization provide portable data;
store-once, use-everywhere

• XML and Java seem made for each other!
• Programs use XML via Application Programming Interfaces

(APIs)
• Low-level APIs allow programmers to deal with the XML

document and its data
– DOM, SAX, and JDOM are the most commonly-used low-level APIs
– JAXP (Java API for XML Programming) is relatively new and is

becoming popular
• High-level APIs provide a simpler interface that calls one of

the lower-level APIs "under-the-covers"
– High-level APIs tend to be easier to develop with but usually add

processing costs (no free-lunch!)
– XML data binding is an example of a high-level interface

Copyright @ 2005, John Jay King Page 61

Programmer APIs

• DOM (Document Object Model) has been around
for many years and is frequently used

• SAX (Simple API for XML) is newer than DOM
and offers many Java-specific features

• JDOM (Java Document Object Model) is a Java-
specific API tailored specifically to the needs of
Java programmers

• JAXP (Java API for XML Programming) is really a
higher-level API designed to take some of the
complexity out of using DOM, SAX, or JDOM

Copyright @ 2005, John Jay King Page 62

DBA's XML role

• The DBA's role in XML development, deployment, and
execution is crucial

• Database access must be granted to applications and
database object using XML must be created

• DBAs are the "answer-people" to whom programmers and
users bring any manner of programming or SQL problem
remotely connected to the database, so, XML is one more
tool to be aware of

• DBAs must make sure that XML developers access the
database as efficiently as possible and help create
designs that provide reasonable performance

• Finally, most Oracle and other databases are shipping
configuration files in XML format and DBAs must be able
to understand the syntax in order to make the appropriate
modifications

Copyright @ 2005, John Jay King Page 63

Wrapping it all Up

• XML provides portable data to compliment the
portable programming that Java provides

• DBAs must become aware of the basics of XML
and its use

• XML is increasingly being used for data
interchange and configuration

• As developers begin to use XML DBAs must be
ready to support and improve their use of XML

Copyright @ 2005, John Jay King Page 64

XML in “The Real World”

• Okay, what will we use XML for?
– Passing data between computer systems

• Transaction data (new EDI standards)
• SOAP, WSDL, UDDI, and WSIL (web services)
• Transmission/exchange of data in universal format

– Control files (database/server/software configuration)
• XML is not intended to be a replacement for

database management systems
– Silly things I’ve heard smart people say…
– Database management systems like Oracle increasingly

hold non-standard data (photos, sound, etc…)
– Oracle and other databases now provide the ability to:

• Produce query output in XML form
• Store XML data in its native form (unstructured data)
• Parse XML data and store it in relational form (structured data)

Copyright @ 2005, John Jay King Page 65

Training Days 2006
Mark your calendar for:

February 15-16, 2006!

Copyright @ 2005, John Jay King Page 66

To contact the author:To contact the author:
John King
King Training Resources
6341 South Williams Street
Littleton, CO 80121-2627 USA
1.800.252.0652 - 1.303.798.5727
Email: john@kingtraining.com

Today’s slides and examples are on the web:Today’s slides and examples are on the web:
http://www.kingtraining.com

Thanks for your attention!

▬

http://www.kingtraining.com/

	XML Survival Skills for DBAs
	Session Objectives
	Major Keywords
	eXtensible Markup Language (XML)
	History of XML
	 Recent Updates
	XML and HTML
	XML and HTML
	XML "Family" of Software
	Why XML?
	Some XML Languages
	XML Tags and Elements
	Element Hierarchy
	Tag/Element Naming
	Attributes
	"Well-Formed" XML
	Character Entities
	XML Processors
	Parsers
	Oracle XML Support
	JDeveloper
	JDeveloper XML Editor
	XMLType Functions
	SQL’s XML Functions
	SYS_XMLGEN
	SYS_XMLAGG
	XMLElement
	XMLAttributes
	Putting them Together
	Other XML Functions
	PL/SQL XML INSERT
	Style Sheets
	Using XSL Stylesheets
	XSL and CSS
	XSLT
	Stylesheet Elements
	Sample Stylesheet, page 1
	Sample Stylesheet, page 2
	DTDs & Schemas: "Valid" Documents
	Document Tag Definition (DTD)
	DTD Rules
	DTD Syntax
	Sample DTD
	Using XML DTDs
	Problems with DTDs
	Schemas
	XML Schema Syntax, page 1
	XML Schema Syntax, page 2
	Using XML Schemas
	XPath and Xlink
	Oracle9i R2 – XML DB
	Oracle 10g R1 – XML DB
	Oracle 10g R2 – XML DB
	Structured Storage
	Schema Validation
	XML DB Components
	What is WebDAV?
	Running Oracle’s XDB Demo
	XML and JSP (User Tag Libraries)
	XML and Java (DOM, SAX, SOAP)
	Programmer APIs
	DBA's XML role
	Wrapping it all Up
	XML in “The Real World”
	Training Days 2006

